Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biochem Pharmacol ; 215: 115754, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597814

RESUMO

Bitter taste receptors (TAS2R) are found in numerous extra-oral tissues, including smooth muscle (SM) cells in both vascular and visceral tissues. Upon activation, TAS2R stimulate the relaxation of the SM. Nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway is involved in penile erection, and type 5 phosphodiesterase (PDE5) inhibitors, a cGMP-specific hydrolase are used as first-line treatments for erectile dysfunction (ED). Nevertheless, PDE5 inhibitors are ineffective in a considerable number of patients, prompting research into alternative pharmacological targets for ED. Since TAS2R agonists regulate SM contractility, this study investigates the role of TAS2Rs in rat corpus cavernosum (CC). We performed immunohistochemistry to detect TAS2R10, isometric force recordings for TAS2R agonists denatonium and chloroquine, the slow-release H2S donor GYY 4137, the NO donor SNAP, the ß-adrenoceptor agonist isoproterenol and electrical field stimulation (EFS), as well as measurement of endogenous hydrogen sulfide (H2S) production. The immunofluorescence staining indicated that TAS2R10 was broadly expressed in the CC SM and to some extent in the nerve fibers. Denatonium, chloroquine, SNAP, and isoproterenol cause potent dose-dependent SM relaxations. H2S production was decreased by NO and H2S synthase inhibitors, while it was enhanced by denatonium. In addition, denatonium increased the relaxations induced by GYY 4137 and SNAP but failed to modify EFS- and isoproterenol-induced responses. These results suggest neuronal and SM TAS2R10 expression in the rat CC, where denatonium induces a strong SM relaxation per se and promotes the H2S- and NO-mediated inhibitory gaseous neurotransmission. Thus, TAS2R10 might represent a valuable therapeutic target in ED.


Assuntos
Cloroquina , Paladar , Masculino , Animais , Ratos , Isoproterenol , GMP Cíclico
2.
Life Sci ; 296: 120432, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219697

RESUMO

AIMS: Nitric oxide (NO) and hydrogen sulfide (H2S) are involved in nerve-mediated corpus cavernosum (CC) relaxation. Expression of phosphodiesterase type 5 (PDE5) and type 4 (PDE4), cyclic guanosine monophosphate (cGMP)- and cyclic adenosine monophosphate (cAMP)-specific, respectively, has been described and PDE5- and PDE4-inhibitors induce cavernous smooth muscle relaxation. Whereas the NO/cGMP signaling pathway is well established in penile erection, the cAMP-mediated mechanism is not fully elucidated. The aim of this study is to investigate the localization and the functional significance of PDE4 in rat CC tone regulation. MAIN METHODS: We performed immunohistochemistry for the detection of the PDE4A isoenzyme. Isometric tension recordings for roflumilast and tadalafil, PDE4 and PDE5 inhibitors, respectively, electrical field stimulation (EFS) and ß-adrenoceptor agonist isoproterenol and endogenous H2S production measurement. KEY FINDINGS: A marked PDE4A expression was detected mainly localized in the nerve cells of the cavernous smooth muscle. Furthermore, roflumilast and tadalafil exhibited strong corpus cavernous relaxations. Endogenous H2S production was decreased by NO and H2S synthase inhibitors and increased by roflumilast. Isoproterenol- and EFS-induced relaxations were increased by roflumilast. SIGNIFICANCE: These results indicate that PDE4A is mainly expressed within the nerves cells of the rat CC, where roflumilast induces a potent corpus cavernous relaxation per se and potentiates the response induced by ß-adrenoceptor activation. The fact that roflumilast enhances H2S production, as well as EFS-elicited responses suggests that PDE4 inhibitors modulate, in a positive feedback fashion, nerve-mediated relaxation induced by gasotransmitters, thus indicating a key role for neuronal PDE4 in penile erection.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Gasotransmissores/metabolismo , Pênis/fisiologia , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Aminopiridinas/administração & dosagem , Animais , Benzamidas/administração & dosagem , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Sulfeto de Hidrogênio/metabolismo , Masculino , Relaxamento Muscular/efeitos dos fármacos , Nitroarginina/farmacologia , Pênis/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Ratos Wistar , Tadalafila/farmacologia
3.
Biochem Pharmacol ; 195: 114850, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822809

RESUMO

Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2- and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2- production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Endotélio Vascular/metabolismo , Rim/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Artéria Renal/metabolismo , Amidinas/farmacologia , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2J2/metabolismo , Citocromo P-450 CYP4A/metabolismo , Família 2 do Citocromo P450/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/metabolismo , Rim/irrigação sanguínea , Masculino , Obesidade/fisiopatologia , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/efeitos dos fármacos , Artéria Renal/fisiopatologia , Esteroide 16-alfa-Hidroxilase/metabolismo , Sulfafenazol/farmacologia , Vasodilatação/efeitos dos fármacos
4.
Nutrients ; 13(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808927

RESUMO

Vegetable oils such as palm oil (enriched in saturated fatty acids, SFA) and high-oleic-acid sunflower oil (HOSO, containing mainly monounsaturated fatty acids, MUFA) have emerged as the most common replacements for trans-fats in the food industry. The aim of this study is to analyze the impact of SFA and MUFA-enriched high-fat (HF) diets on endothelial function, vascular remodeling, and arterial stiffness compared to commercial HF diets. Five-week-old male C57BL6J mice were fed a standard (SD), a HF diet enriched with SFA (saturated oil-enriched Food, SOLF), a HF diet enriched with MUFA (unsaturated oil-enriched Food, UOLF), or a commercial HF diet for 8 weeks. Vascular function was analyzed in the thoracic aorta. Structural and mechanical parameters were assessed in mesenteric arteries by pressure myography. SOLF, UOLF, and HF diet reduced contractile responses to phenylephrine and induced endothelial dysfunction in the thoracic aorta. A significant increase in the ß-index, and thus in arterial stiffness, was also detected in mesenteric arteries from the three HF groups, due to enhanced deposition of collagen in the vascular wall. SOLF also induced hypotrophic inward remodeling. In conclusion, these data demonstrate a deleterious effect of HF feeding on obesity-related vascular alterations that is exacerbated by SFA.


Assuntos
Artérias/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Rigidez Vascular/efeitos dos fármacos , Animais , Aorta Torácica/efeitos dos fármacos , Artérias/fisiologia , Peso Corporal , Colágeno/metabolismo , Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/farmacologia , Elastina , Ácidos Graxos/farmacologia , Distrofia Endotelial de Fuchs , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Ácido Oleico , Óleos de Plantas , Óleo de Girassol , Remodelação Vascular/efeitos dos fármacos
5.
Redox Biol ; 28: 101330, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563085

RESUMO

Oxidative stress-associated endothelial dysfunction is a key pathogenic factor underlying the microvascular complications of metabolic disease. NADPH oxidase (Nox) is a major source of oxidative stress in diabetic nephropathy and chronic kidney disease, despite Nox4 and Nox2 have been identified as relevant sources of vasodilator endothelial H2O2.The present study was sought to investigate the role of Nox enzymes in renal vascular oxidative stress and endothelial dysfunction in a rat model of genetic obesity. Endothelial function was assessed in intrarenal arteries of obese Zucker rats (OZR) and their counterparts lean Zucker rats (LZR) mounted in microvascular myographs, and superoxide (O2.-) and H2O2 production were measured. Impaired endothelium-dependent relaxations to acetylcholine (ACh) were associated to augmented O2.- generation, but neither ROS scavengers nor the Nox inhibitor apocynin significantly improved these relaxant responses in renal arteries of OZR. Whereas NO contribution to endothelial relaxations was blunted, catalase-sensitive non-NO non-prostanoid relaxations were enhanced in obese rats. Interestingly, NADPH-dependent O2.- production was augmented while NADPH-dependent H2O2 generation was reduced, and cytosolic and mitochondrial SOD were up-regulated in kidney of obese rats. Nox4 was down-regulated in renal arteries and Nox4-dependent H2O2 generation and endothelial relaxation were reduced in OZR. Up-regulation of both Nox2 and Nox1 was associated with augmented O2.- production but reduced H2O2 generation and blunted endothelial Nox2-derived H2O2-mediated in obese rats. Moreover, increased Nox1-derived O2.- contributed to renal endothelial dysfunction in OZR. In summary, the current data support a main role for Nox1-derived O2.- in kidney vascular oxidative stress and renal endothelial dysfunction in obesity, while reduced endothelial Nox4 expression associated to decreased H2O2 generation and H2O2-mediated vasodilatation might hinder Nox4 protective renal effects thus contributing to kidney injury. This suggests that effective therapies to counteract oxidative stress and prevent microvascular complications must identify the specific Nox subunits involved in metabolic disease.


Assuntos
Endotélio Vascular/metabolismo , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Suscetibilidade a Doenças , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Masculino , Metabolômica , Modelos Biológicos , NADPH Oxidase 1/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Obesidade/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia , Superóxidos/metabolismo
6.
Oxid Med Cell Longev ; 2019: 5641645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531184

RESUMO

PURPOSE: This study investigates whether functionality and/or expression changes of transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) channels, oxidative stress, and hydrogen sulfide (H2S) are involved in the bladder dysfunction from an insulin-resistant obese Zucker rat (OZR). MATERIALS AND METHODS: Detrusor smooth muscle (DSM) samples from the OZR and their respective controls, a lean Zucker rat (LZR), were processed for immunohistochemistry for studying the expression of TRPA1 and TRPV1 and the H2S synthase cystathionine beta-synthase (CBS) and cysthathionine-γ-lyase (CSE). Isometric force recordings to assess the effects of TRPA1 agonists and antagonists on DSM contractility and measurement of oxidative stress and H2S production were also performed. RESULTS: Neuronal TRPA1 expression was increased in the OZR bladder. Electrical field stimulation- (EFS-) elicited contraction was reduced in the OZR bladder. In both LZR and OZR, TRPA1 activation failed to modify DSM basal tension but enhanced EFS contraction; this response is inhibited by the TRPA1 blockade. In the OZR bladder, reactive oxygen species, malondialdehyde, and protein carbonyl contents were increased and antioxidant enzyme activities (superoxide dismutase, catalase, GR, and GPx) were diminished. CSE expression and CSE-generated H2S production were also reduced in the OZR. Both TRPV1 and CBS expressions were not changed in the OZR. CONCLUSIONS: These results suggest that an increased expression and functionality of TRPA1, an augmented oxidative stress, and a downregulation of the CSE/H2S pathway are involved in the impairment of nerve-evoked DSM contraction from the OZR.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Resistência à Insulina , Obesidade , Estresse Oxidativo , Canal de Cátion TRPA1/metabolismo , Doenças da Bexiga Urinária , Bexiga Urinária , Animais , Cistationina beta-Sintase , Cistationina gama-Liase , Masculino , Contração Muscular , Músculo Liso , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Ratos , Ratos Zucker , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Bexiga Urinária/fisiopatologia , Doenças da Bexiga Urinária/metabolismo , Doenças da Bexiga Urinária/patologia , Doenças da Bexiga Urinária/fisiopatologia
7.
Sci Rep ; 8(1): 4711, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549279

RESUMO

Nitric oxide (NO) and hydrogen sulfide (H2S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H2S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H2S generation was diminished by H2S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H2S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H2S-mediated inhibitory neurotransmission.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Bexiga Urinária/metabolismo , Adulto , Idoso , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Rolipram/farmacologia , Suínos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia
8.
Pulm Pharmacol Ther ; 41: 1-10, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27603231

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter employed for intra- and inter-cellular communication in almost all organ systems. This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 µm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine ß-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K+, transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K+ concentration inhibited the GYY4137 relaxation. Large conductance Ca2+-activated K+ channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca2+]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced via NO/sGC-independent mechanisms involving K+ channels and intracellular Ca2+ desensitization-dependent pathways. Thus, based on our current results H2S donors might be useful as bronchodilator agents for the treatment of lung diseases with persistent airflow limitation, such as asthma and chronic obstructive lung disease.


Assuntos
Bronquíolos/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Histamina/metabolismo , Masculino , Morfolinas/farmacologia , Relaxamento Muscular/fisiologia , Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Compostos Organotiofosforados/farmacologia , Canais de Potássio/metabolismo , Suínos
9.
PLoS One ; 11(6): e0157424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27285468

RESUMO

Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR.


Assuntos
Obesidade/fisiopatologia , Receptor CB1 de Canabinoide/análise , Receptor CB2 de Canabinoide/análise , Transmissão Sináptica , Bexiga Urinária/inervação , Bexiga Urinária/fisiopatologia , Animais , Masculino , Contração Muscular , Músculo Liso/inervação , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Fibras Nervosas/patologia , Obesidade/patologia , Ratos , Ratos Zucker , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Bexiga Urinária/patologia
10.
Free Radic Biol Med ; 84: 77-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841778

RESUMO

Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Obesidade/enzimologia , Estresse Oxidativo , Acetilcolina/farmacologia , Animais , Ciclo-Oxigenase 1/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Rim/irrigação sanguínea , Masculino , Proteínas de Membrana/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/fisiopatologia , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/enzimologia , Artéria Renal/fisiopatologia , S-Nitroso-N-Acetilpenicilamina/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
11.
PLoS One ; 9(11): e113580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415381

RESUMO

According to previous observations nitric oxide (NO), as well as an unknown nature mediator are involved in the inhibitory neurotransmission to the intravesical ureter. This study investigates the hydrogen sulfide (H2S) role in the neurogenic relaxation of the pig intravesical ureter. We have performed western blot and immunohistochemistry to study the expression of the H2S synthesis enzymes cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS), measurement of enzymatic production of H2S and myographic studies for isometric force recording. Immunohistochemical assays showed a high CSE expression in the intravesical ureter muscular layer, as well as a strong CSE-immunoreactivity within nerve fibres distributed along smooth muscle bundles. CBS expression, however, was not consistently observed. On ureteral strips precontracted with thromboxane A2 analogue U46619, electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked frequency- and concentration-dependent relaxations. CSE inhibition with DL-propargylglycine (PPG) reduced EFS-elicited responses and a combined blockade of both CSE and NO synthase (NOS) with, respectively, PPG and NG-nitro-L-arginine (L-NOARG), greatly reduced such relaxations. Endogenous H2S production rate was reduced by PPG, rescued by addition of GYY4137 and was not changed by L-NOARG. EFS and GYY4137 relaxations were also reduced by capsaicin-sensitive primary afferents (CSPA) desensitization with capsaicin and blockade of ATP-dependent K+ (KATP) channels, transient receptor potential A1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide (VIP/PACAP) and calcitonin gene-related peptide (CGRP) receptors with glibenclamide, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively. These results suggest that H2S, synthesized by CSE, is involved in the inhibitory neurotransmission to the pig intravesical ureter, through an NO-independent pathway, producing smooth muscle relaxation via KATP channel activation. H2S also promotes the release of inhibitory neuropeptides, as PACAP 38 and/or CGRP from CSPA through TRPA1, TRPV1 and related ion channel activation.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Transmissão Sináptica , Ureter/enzimologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Masculino , Morfolinas/farmacologia , Músculo Liso/enzimologia , Neuropeptídeos/metabolismo , Compostos Organotiofosforados/farmacologia , Suínos , Transmissão Sináptica/efeitos dos fármacos , Ureter/citologia , Vasoconstritores/farmacologia
12.
PLoS One ; 9(9): e106372, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216050

RESUMO

OBJECTIVE: Peripheral arterial disease is one of the macrovascular complications of type 2 diabetes mellitus. This study addresses femoral artery regulation in a prediabetic model of obese Zucker rats (OZR) by examining cross-talk between endothelial and neural factors. METHODS AND RESULTS: Arterial preparations from lean (LZR) and OZR were subjected to electrical field stimulation (EFS) on basal tone. Nitric oxide synthase (NOS) and cyclooxygenase (COX) isoform expression patterns were determined by immunohistochemical labelling and Western blotting. Results indicate significantly reduced noradrenergic contractions in preparations from OZR compared with those of LZR. Functional inhibition of endothelial NOS (eNOS) indicated a predominant role of this isoform in LZR and its modified activity in OZR. Neural (nNOS) and inducible NOS (iNOS) were activated and their expression was higher in femoral arteries from OZR. Neurotransmission modulated by large-conductance Ca2+-activated (BKCa) or voltage-dependent (KV) K+ channels did not seem compromised in the obese animals. Endothelial COX-1 and COX-2 were expressed in LZR and an additional adventitial location of COX-2 was also observed in OZR, explaining the higher COX-2 protein levels detected in this group. Prostanoids derived from both isoforms helped maintain vasoconstriction in LZR while in OZR only COX-2 was active. Superoxide anion inhibition reduced contractions in endothelium-intact arteries from OZR. CONCLUSIONS: Endothelial dysfunction led to reduced neurogenic vasoconstriction in femoral arteries from OZR. In a setting of obesity, NO-dependent nNOS and iNOS dilation activity could be an alternative mechanism to offset COX-2- and reactive oxygen species-mediated vasoconstriction, along with impaired endothelial NO relaxation.


Assuntos
Artéria Femoral/fisiopatologia , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Vasoconstrição , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Isoenzimas/metabolismo , Masculino , Canais de Potássio/metabolismo , Ratos Zucker , Superóxidos/metabolismo
13.
J Sex Med ; 10(9): 2141-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23875673

RESUMO

INTRODUCTION: Erectile dysfunction is considered as an early sign of subclinical vascular disease and endothelial dysfunction and a highly prevalent condition in diabetic patients. AIM: The current study assessed whether impaired vascular effects of endothelin (ET)-1 may contribute to the vascular dysfunction of penile arteries from a rat model of insulin resistance. METHODS: The effect of ETA and ETB receptor antagonists was assessed on the intracellular Ca(2+) [Ca(2+) ]i and contractile responses to ET-1 in penile arteries from obese Zucker rats (OZR) and lean Zucker rats (LZR), and ET receptor expression in the arterial wall was assessed by immunohistochemistry. MAIN OUTCOME MEASURE: Changes in ET-1 [Ca(2+) ]i and vasoconstriction and ET receptor expression were evaluated in penile arteries from insulin-resistant rats. RESULTS: ET-1-induced vasoconstriction was associated with a higher increase in smooth muscle [Ca(2+) ]i in penile arteries from OZR compared with LZR. Removal of the endothelium inhibited and enhanced contractions to the lowest and highest doses of ET-1, respectively, mainly in OZR. The selective ETA receptor antagonist BQ-123 inhibited ET-1 vasoconstriction and [Ca(2+) ]i response in both LZR and OZR. The ETB receptor antagonist BQ-788 had little effect in healthy arteries but markedly inhibited ET-1-induced increases in [Ca(2+) ]i and vasoconstriction in arteries from OZR. ETA receptors were located on the smooth muscle and endothelium of penile arteries, whereas ETB receptors were found on the arterial endothelium in LZR and OZR, and also on the smooth muscle in OZR, immunostaining for both receptors being higher in OZR. CONCLUSION: Penile arteries from OZR exhibit an impaired ET-1 Ca(2+) signaling along with changes in the ET receptor profile. Thus, whereas ET-1 contraction and the associated [Ca(2+) ]i increase are mediated by smooth muscle ETA receptors in healthy arteries, ETB receptors contribute to contraction and are coupled to the augmented ET-1 [Ca(2+) ]i response under conditions of insulin resistance.


Assuntos
Sinalização do Cálcio , Endotelina-1/fisiologia , Endotélio Vascular/metabolismo , Impotência Vasculogênica/etiologia , Resistência à Insulina , Músculo Liso Vascular/metabolismo , Pênis/irrigação sanguínea , Receptor de Endotelina B/metabolismo , Vasoconstrição , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Humanos , Impotência Vasculogênica/metabolismo , Impotência Vasculogênica/fisiopatologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Ratos , Ratos Zucker , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
14.
J Urol ; 189(4): 1567-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23063804

RESUMO

PURPOSE: We investigated the possible involvement of H2S in nitric oxide independent inhibitory neurotransmission to the pig bladder neck. MATERIALS AND METHODS: We used immunohistochemistry to determine the expression of the H2S synthesis enzymes cystathionine γ-lyase and cystathionine ß-synthase. We also used electrical field stimulation and myographs for isometric force recordings to study relaxation in response to endogenously released or exogenously applied H2S in urothelium denuded, phenylephrine precontracted bladder neck strips under noradrenergic, noncholinergic, nonnitrergic conditions. RESULTS: Cystathionine γ-lyase and cystathionine ß-synthase expression was observed in nerve fibers in the smooth muscle layer. Cystathionine γ-lyase and cystathionine ß-synthase immunoreactive fibers were also identified around the small arteries supplying the bladder neck. Electrical field stimulation (2 to 16 Hz) evoked frequency dependent relaxation, which was decreased by DL-propargylglycine and abolished by tetrodotoxin (blockers of cystathionine γ-lyase and neuronal voltage gated Na(+) channels, respectively). The cystathionine ß-synthase inhibitor O-(carboxymethyl)hydroxylamine did not change nerve mediated responses. The H2S donor GYY4137 (0.1 nM to 10 µM) induced potent, concentration dependent relaxation, which was not modified by neuronal voltage gated Na(+) channels, or cystathionine γ-lyase or cystathionine ß-synthase blockade. CONCLUSIONS: Results suggest that endogenous H2S synthesized by cystathionine γ-lyase and released from intramural nerves acts as a powerful signaling molecule in nitric oxide independent inhibitory transmission to the pig bladder neck.


Assuntos
Sulfeto de Hidrogênio , Transmissão Sináptica/fisiologia , Bexiga Urinária/fisiologia , Animais , Feminino , Sulfeto de Hidrogênio/metabolismo , Masculino , Suínos
15.
PLoS One ; 7(4): e36027, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22540017

RESUMO

OBJECTIVE: Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes. METHODS AND RESULTS: Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls. CONCLUSIONS: The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.


Assuntos
Resistência à Insulina , Óxido Nítrico Sintase/metabolismo , Obesidade/metabolismo , Pênis/irrigação sanguínea , Vasodilatação/efeitos dos fármacos , Acetofenonas/farmacologia , Animais , Arginina/metabolismo , Artérias/fisiopatologia , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Cálcio/metabolismo , Estimulação Elétrica , Endotélio Vascular/metabolismo , Disfunção Erétil/etiologia , GTP Cicloidrolase/metabolismo , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Obesidade/patologia , Estresse Oxidativo , Ratos , Ratos Zucker , Transdução de Sinais , Superóxidos/metabolismo
16.
Neurourol Urodyn ; 31(5): 688-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22460263

RESUMO

AIMS: The involvement of endothelin receptors in the contraction of the lower urinary tract smooth muscle is well established. There is scarce information, however, about endothelin receptors mediating relaxation of the bladder outlet region. The current study investigates the possible existence of endothelin ET(B) receptors involved in the relaxation of pig bladder neck. METHODS: ET(B) receptor expression was determined by immunohistochemistry and urothelium-denuded bladder neck strips were mounted in organ baths for isometric force recording. RESULTS: ET(B) -immunoreactivity (ET(B) -IR) was observed within nerve fibers among smooth muscle bundles and urothelium. BQ3020 (0.01-300 nM), an ET(B) receptor agonist, produced concentration-dependent relaxations which were reduced by BQ788, an ET(B) receptor antagonist, and by inhibitors of protein kinase A (PKA) and large (BK(Ca) )- or small (SK(Ca) )-conductance Ca(2+) -activated K(+) channels. Pretreatment with BK(Ca) or SK(Ca) channel inhibitors plus PKA blocking did not cause further inhibition compared with that exerted by inhibiting BK(Ca) or SK(Ca) channels only. BQ3020-induced relaxation was not modified by blockade of either nitric oxide (NO) synthase, guanylyl cyclase, cyclooxygenase (COX) or of intermediate-conductance Ca(2+) -activated-(IK(Ca) ), ATP-dependent-(K(ATP) ), or voltage-gated-(K(v) ) K(+) channels. Under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation (0.5-16 Hz) evoked frequency-dependent relaxations, which were reduced by BQ788 and potentiated by threshold concentrations of BQ3020. CONCLUSIONS: These results suggest that BQ3020 produces relaxation of the pig bladder neck via activation of muscle endothelin ET(B) receptors, NO/cGMP- and COX-independent-, cAMP-PKA pathway-dependent-mechanisms, and involving BK(Ca) and SK(Ca) channel activation. ET(B) receptors are also involved in the NANC inhibitory neurotransmission.


Assuntos
Relaxamento Muscular , Músculo Liso/metabolismo , Receptor de Endotelina B/metabolismo , Bexiga Urinária/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Endotelinas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/inervação , Fibras Nervosas/metabolismo , Neurotransmissores/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Guanilil Ciclase Solúvel , Suínos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação , Urotélio/metabolismo
17.
Biochem Pharmacol ; 83(7): 882-92, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22260985

RESUMO

The role of endothelial and neural factors as modulators of neurogenic- and noradrenaline-induced vasoconstriction was examined in healthy pig internal mammary artery (IMA). Tetrodotoxin-, guanethidine-sensitive electrical field stimulation (EFS)-, and noradrenaline-elicited contractions were significantly diminished by prazosin (n=8, P<0.001) and less so by rauwolscine, indicating functional α1- and α2-adrenoceptor-mediated noradrenergic innervation of the IMA. Endothelium removal reduced neurogenic (n=8, P<0.01) but augmented noradrenaline responses (n=8, P<0.01), suggesting the release of two endothelium-dependent factors with opposite effects. In the presence of endothelium, neurogenic and exogenous noradrenaline vasoconstrictions were enhanced by L-NOArg (n=7, P<0.05 and P<0.01 respectively) and ODQ (n=7, both P<0.05); in denuded arteries, nNOS inhibition with N(ω)-propyl-L-arginine increased neurogenic contraction (n=7, P<0.05). Western blotting indicated the presence of neural and endothelial origin NO (n=6, P<0.001). Tetraethylammonium (n=9, P<0.001), iberiotoxin (n=7, P<0.001) and 4-aminopyridine (n=8, P<0.01) enhanced vasoconstrictions revealing a modulatory role of big conductance Ca²âº-activated K⁺ (BK(Ca)) and voltage-dependent K⁺ (K(v)) channels in noradrenergic responses. Bosentan pretreatment (n=8, P<0.05) suggested endothelin-1 as the inferred contractile neurogenic endothelial-dependent factor. Indomethacin-induced inhibition involved a muscular prostanoid (n=9, P<0.05), functionally and immunologically localized, and derived from cyclooxygenase (COX)-1 and COX-2, as revealed by Western blots (n=5, P=0.1267). Thus, noradrenergic IMA contractions are controlled by contractile prostanoid activation and endothelin-1 release, and offset by BK(Ca) and K(v) channels and neural and endothelial NO. These results help clarify the mechanisms of vasospasm in IMA, as the preferred vessel for coronary bypass.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Fatores Relaxantes Dependentes do Endotélio/metabolismo , Artéria Torácica Interna/efeitos dos fármacos , Norepinefrina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Antagonistas Adrenérgicos/farmacologia , Animais , Western Blotting , Estimulação Elétrica , Endotélio Vascular/inervação , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Imuno-Histoquímica , Técnicas In Vitro , Canais KATP/metabolismo , Masculino , Artéria Torácica Interna/inervação , Artéria Torácica Interna/metabolismo , Artéria Torácica Interna/fisiologia , Antagonistas Muscarínicos/farmacologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Óxido Nítrico/metabolismo , Norepinefrina/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Prostaglandinas/metabolismo , Suínos , Sistema Nervoso Simpático/fisiologia , Vasoconstrição/fisiologia
18.
Neurourol Urodyn ; 30(1): 151-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20658543

RESUMO

AIMS: The current study investigates the mechanisms involved in nitric oxide (NO)-independent, nonadrenergic, noncholinergic (NANC) inhibitory neurotransmission to the pig urinary bladder neck. METHODS: Urothelium-denuded strips were mounted in organ baths containing physiological saline solution (PSS) at 37°C for isometric force recordings. The relaxations to electrical field stimulation (EFS) were carried out on strips treated with guanethidine, atropine and N(G) -nitro-L-arginine, to block noradrenergic neurotransmission, muscarinic receptors and NO synthase, respectively, and precontracted with phenylephrine. RESULTS: EFS (1-16 Hz) produced frequency-dependent relaxations which were abolished by the blockade of neuronal voltage-activated Na(+) channels. Nonselective and selective inhibition of COX and COX-1, respectively, and blockade of Na(+) -K(+) ATPase reduced the EFS-induced relaxations. However, blockade of COX-2, soluble guanylyl cyclase, large-, intermediate- and small-conductance Ca(2+) -activated K(+) channels, ATP-dependent K(+) channels, voltage-gated K(+) channels, cAMPc-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) failed to modify the nerve-mediated relaxations. CONCLUSIONS: The NO-independent inhibitory neurotransmission to the pig urinary bladder neck is mediated, in part, through prostanoids release from a COX-1 pathway, and through activation of the Na(+) -K(+) ATPase. PKA and PKG pathways and postjunctional K(+) channels do not appear to be involved in the NO-independent nerve-mediated relaxations.


Assuntos
Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Bexiga Urinária/fisiologia , Adrenérgicos/farmacologia , Animais , Atropina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Ciclo-Oxigenase 1/metabolismo , Estimulação Elétrica/métodos , Feminino , Guanetidina/farmacologia , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos , Bexiga Urinária/efeitos dos fármacos
19.
Atherosclerosis ; 213(2): 392-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20956003

RESUMO

Obesity and metabolic syndrome increase the risk of coronary heart disease and lead to a proinflammatory state of the vascular wall. Endothelial dysfunction is associated with up-regulation of cyclooxygenase-2 (COX-2) and enhanced synthesis of constrictor prostaglandins in systemic arteries in diabetes. The present study assessed whether changes in the arachidonic acid (AA) metabolism via COX-1 and COX-2 may affect endothelial function of coronary arteries in obesity. Intramyocardial arteries from obese Zucker rats (OZR) and from lean Zucker rats (LZR) were mounted in microvascular myographs to assess vascular function and COX expression was determined by both immunohistochemistry and Western blot. AA elicited relaxations of similar magnitude in arteries from LZR and OZR which were abolished by endothelial cell removal. Selective inhibition of COX-1 enhanced the AA relaxant responses and inhibited the 5-hydroxytryptamine (5-HT)-induced vasoconstriction in arteries from both LZR and OZR. Antagonism of the TXA(2)/PGH(2) (TP) receptor mimicked the effects of COX-1 blockade in arteries from LZR but not OZR. Selective inhibition of COX-2 markedly reduced the vasodilatation induced by AA in OZR, but not in LZR, without altering 5-HT or ACh responses. COX-1 was widely distributed throughout the endothelial layer of coronary arteries from both LZR and OZR, while COX-2 protein, which was predominantly expressed in the endothelium, was significantly increased in arteries from OZR. Whereas AA is mainly metabolised to vasoconstrictor prostanoids via COX-1 in coronary arteries from healthy animals, endothelial COX-2 is up-regulated to produce vasodilator prostaglandins thus protecting coronary arteries in insulin resistant obese rats.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Obesidade/metabolismo , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Ácido Araquidônico/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Resistência à Insulina , Nitrobenzenos/farmacologia , Ratos , Ratos Zucker , Receptores de Tromboxano A2 e Prostaglandina H2/antagonistas & inibidores , Serotonina/farmacologia , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos
20.
Br J Pharmacol ; 161(2): 350-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20735420

RESUMO

BACKGROUND AND PURPOSE: Metabolic and cardiovascular abnormalities accompanying metabolic syndrome, such as obesity, insulin resistance and hypertension, are all associated with endothelial dysfunction and are independent risk factors for erectile dysfunction. The purpose of the present study was to investigate the vascular effects of insulin in penile arteries and whether these effects are impaired in a rat model of insulin resistance and metabolic syndrome. EXPERIMENTAL APPROACH: Penile arteries from obese Zucker rats (OZR) and their counterpart, lean Zucker rats (LZR), were mounted on microvascular myographs and the effects of insulin were assessed in the absence and presence of endothelium and of specific inhibitors of nitric oxide (NO) synthesis, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Insulin-induced changes in intracellular Ca(2+) concentration [Ca(2+)](i) were also examined. KEY RESULTS OZR exhibited mild hyperglycaemia, hypercholesterolemia, hypertryglyceridemia and hyperinsulinemia. Insulin induced endothelium- and NO-dependent relaxations in LZR that were impaired in OZR. Inhibition of PI3K reduced relaxation induced by insulin and by the beta-adrenoceptor agonist isoprenaline, mainly in arteries from LZR. Antagonism of endothelin 1 (ET-1) receptors did not alter insulin-induced relaxation in either LZR or OZR, but MAPK blockade increased the responses in OZR. Insulin decreased [Ca(2+)](i), a response impaired in OZR. CONCLUSIONS AND IMPLICATIONS: Insulin-induced relaxation was impaired in penile arteries of OZR due to altered NO release through the PI3K pathway and unmasking of a MAPK-mediated vasoconstriction. This vascular insulin resistance is likely to contribute to the endothelial dysfunction and erectile dysfunction associated with insulin resistant states.


Assuntos
Artérias/metabolismo , Endotélio Vascular/metabolismo , Resistência à Insulina , Síndrome Metabólica/fisiopatologia , Obesidade/fisiopatologia , Pênis/irrigação sanguínea , Animais , Artérias/efeitos dos fármacos , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/enzimologia , Síndrome Metabólica/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Obesidade/complicações , Obesidade/enzimologia , Obesidade/metabolismo , Pênis/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Zucker , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA