Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37853248

RESUMO

The circadian clock times physiological and behavioural processes and resets on a daily basis to synchronize with the environment. The involvement of the circadian clock in photoperiodic time measurement synchronising annual rhythms is still under debate and different models have been proposed explaining their integration. Insects overcome unfavourable conditions in diapause, a form of dormancy. A latitudinal cline in diapause induction in the parasitoid wasp Nasonia vitripennis as well as a difference in circadian light sensitivity between north and south provide us with additional evidence that the circadian system of Nasonia is involved in photoperiodic time measurement and that latitude-specific seasonality drives adaptive evolution in photoperiodism partly through adaptation responses in the circadian system. We tested diapause induction in a range of T-cycles and photoperiods and found diapause induction in short photoperiods in all T-cycles in the northern line but in the southern line, diapause only occurred in T-cycles close to 24 h. Due to a lower light sensitivity in the southern line, a wider distribution of phase angles of entrainment can be expected at a specific T-cycle duration, while the range of entrainment will decrease. Taking these oscillator properties into account, our data can be explained by an external coincidence model involving a single oscillator with a light-sensitive phase that drives annual timing of diapause in Nasonia vitripennis.

2.
Heredity (Edinb) ; 131(3): 230-237, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524915

RESUMO

B chromosomes are non-essential, extra chromosomes that can exhibit transmission-enhancing behaviors, including meiotic drive, mitotic drive, and induction of genome elimination, in plants and animals. A fundamental but poorly understood question is what characteristics allow B chromosomes to exhibit these extraordinary behaviors. The jewel wasp, Nasonia vitripennis, harbors a heterochromatic, paternally transmitted B chromosome known as paternal sex ratio (PSR), which causes complete elimination of the sperm-contributed half of the genome during the first mitotic division of fertilized embryos. This genome elimination event may result from specific, previously observed alterations of the paternal chromatin. Due to the haplo-diploid reproduction of the wasp, genome elimination by PSR causes female-destined embryos to develop as haploid males that transmit PSR. PSR does not undergo self-elimination despite its presence with the paternal chromatin until the elimination event. Here we performed fluorescence microscopic analyses aimed at understanding this unexplained property. Our results show that PSR, like the rest of the genome, participates in the histone-to-protamine transition, arguing that PSR does not avoid this transition to escape self-elimination. In addition, PSR partially escapes the chromatin-altering activity of the intracellular bacterium, Wolbachia, demonstrating that this ability to evade chromatin alteration is not limited to PSR's own activity. Finally, we observed that the rDNA locus and other unidentified heterochromatic regions of the wasp's genome also seem to evade chromatin disruption by PSR, suggesting that PSR's genome-eliminating activity does not affect heterochromatin. Thus, PSR may target an aspect of euchromatin to cause genome elimination.


Assuntos
Cromossomos de Insetos , Genoma de Inseto , Animais , Protaminas/genética , Protaminas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Feminino , Genes de RNAr , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Loci Gênicos
3.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747634

RESUMO

Escalating vector disease burdens pose significant global health risks, so innovative tools for targeting mosquitoes are critical. We engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR Cas13 and its potent collateral activity. Akin to a stealthy Trojan Horse hiding in stealth awaiting the presence of its enemy, REAPER remains concealed within the mosquito until an infectious blood meal is up taken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13 mediated RNA targeting significantly reduces viral replication and its promiscuous collateral activity can even kill infected mosquitoes. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA