Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Health Phys ; 124(1): 66-71, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223364

RESUMO

ABSTRACT: There is a need for an instantly indicating, easy-to-read, and inexpensive ionizing radiation dosimeter for first responders and members of the general public. One commercially available option is the RADTriage50 TM colorimetric dosimeter. However, existing literature has not adequately addressed the accuracy of RADTriage50 dosimeters at low doses of ionizing radiation (<50 mSv) or the need for methods to quantitatively read the RADTriage50 dosimeters after they are exposed. In this paper, we use digital scanning methods to read the RADTriage50 dosimeters. The performance of the dosimeters was evaluated by irradiation with a gamma irradiator traceable to national standards. Experiments covered a range of deep dose equivalents (50 mSv to 2,000 mSv) within the manufacturer's specified range (50 mSv to 4,000 mSv) and also below 50 mSv to determine if the digital scanning densitometry method allowed for a quantitative readout with a greater dynamic range. We also conducted tests using different gamma energies, 137 Cs (662 keV) and 60 Co (1.17 and 1.33 MeV), and different dose rates to evaluate the dependency of the RADTriage50 dosimeters on these parameters. Modeling of our measurements suggests that the dose-response of the RADTriage50 dosimeter is linear at low doses with strong non-linearity beginning at ~750 mSv and the dosimeter response appearing to plateau at ~2,000 mSv, although additional measurements at doses beyond 2,000 mSv are needed to confirm this finding. We also found that the RadTriage50 dosimeter response varied with gamma energy, but not with dose rate.


Assuntos
Dosímetros de Radiação
2.
Health Phys ; 114(5): 543-548, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578903

RESUMO

The U.S. Navy uses the Harshaw 8840/8841 dosimetric (DT-702/PD) system, which employs LiF:Mg,Cu,P thermoluminescent dosimeters (TLDs), developed and produced by Thermo Fisher Scientific (TFS). The dosimeter consists of four LiF:Mg,Cu,P elements, mounted in Teflon® on an aluminum card and placed in a plastic holder. The holder contains a unique filter for each chip made of copper, acrylonitrile butadiene styrene (ABS), Mylar®, and tin. For accredited dosimetry labs, the ISO/IEC 17025:2005(E) requires an acceptance procedure for all new equipment. The Naval Dosimetry Center (NDC) has developed and tested a new non-destructive procedure, which enables the verification and the evaluation of embedded filters in the holders. Testing is based on attenuation measurements of low-energy radiation transmitted through each filter in a representative sample group of holders to verify that the correct filter type and thickness are present. The measured response ratios are then compared with the expected response ratios. In addition, each element's measured response is compared to the mean response of the group. The test was designed and tested to identify significant nonconformities, such as missing copper or tin filters, double copper or double tin filters, or other nonconformities that may impact TLD response ratios. During the implementation of the developed procedure, testing revealed a holder with a double copper filter. To complete the evaluation, the impact of the nonconformities on proficiency testing was examined. The evaluation revealed failures in proficiency testing categories III and IV when these dosimeters were irradiated to high-energy betas.


Assuntos
Exposição Ocupacional/análise , Dosímetros de Radiação/normas , Proteção Radiológica/instrumentação , Avaliação da Tecnologia Biomédica/métodos , Dosimetria Termoluminescente/métodos , Calibragem , Desenho de Equipamento , Humanos , Militares , Doses de Radiação , Avaliação da Tecnologia Biomédica/normas , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/normas , Estados Unidos
3.
Health Phys ; 111(2): 127-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27356056

RESUMO

Today the armed forces and law enforcement personnel wear body armor, helmets, and flak jackets composed substantially of Kevlar® fiber to prevent bodily injury or death resulting from physical, ballistic, stab, and slash attacks. Therefore, there is a high probability that during a radiation accident or its aftermath, the Kevlar®-composed body armor will be irradiated. Preliminary study with samples of Kevlar® foundation fabric obtained from body armor used by the U.S. Marine Corps has shown that all samples evaluated demonstrated an EPR signal, and this signal increased with radiation dose. Based on these results, the authors predict that, with individual calibration, exposure at dose above 1 Gy can be reliably detected in Kevlar® samples obtained from body armor. As a result of these measurements, a post-event reconstruction of exposure dose can be obtained by taking various samples throughout the armor body and helmet worn by the same irradiated individual. The doses can be used to create a whole-body dose map that would be of vital importance in a case of a partial body or heterogeneous exposure.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Polímeros/análise , Polímeros/efeitos da radiação , Monitoramento de Radiação/instrumentação , Liberação Nociva de Radioativos , Contagem Corporal Total/instrumentação , Relação Dose-Resposta à Radiação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Socorristas , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Teste de Materiais , Militares , Polícia , Polímeros/química , Doses de Radiação , Monitoramento de Radiação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Contagem Corporal Total/métodos
4.
Med Phys ; 41(5): 051907, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784386

RESUMO

PURPOSE: The purpose of this work is to evaluate the performance of the image acquisition chain of clinical full field digital mammography (FFDM) systems by quantifying their image quality, and how well the desired information is captured by the images. METHODS: The authors present a practical methodology to evaluate FFDM using the task specific system-model-based Fourier Hotelling observer (SMFHO) signal to noise ratio (SNR), which evaluates the signal and noise transfer characteristics of FFDM systems in the presence of a uniform polymethyl methacrylate phantom that models the attenuation of a 6 cm thick 20/80 breast (20% glandular/80% adipose). The authors model the system performance using the generalized modulation transfer function, which accounts for scatter blur and focal spot unsharpness, and the generalized noise power spectrum, both estimated with the phantom placed in the field of view. Using the system model, the authors were able to estimate system detectability for a series of simulated disk signals with various diameters and thicknesses, quantified by a SMFHO SNR map. Contrast-detail (CD) curves were generated from the SNR map and adjusted using an estimate of the human observer efficiency, without performing time-consuming human reader studies. Using the SMFHO method the authors compared two FFDM systems, the GE Senographe DS and Hologic Selenia FFDM systems, which use indirect and direct detectors, respectively. RESULTS: Even though the two FFDM systems have different resolutions, noise properties, detector technologies, and antiscatter grids, the authors found no significant difference between them in terms of detectability for a given signal detection task. The authors also compared the performance between the two image acquisition modes (fine view and standard) of the GE Senographe DS system, and concluded that there is no significant difference when evaluated by the SMFHO. The estimated human observer efficiency was 30 ± 5% when compared to the SMFHO. The results showed good agreement when compared to other model observers as well as previously published human observer data. CONCLUSIONS: This method generates CD curves from the SMFHO SNR that can be used as figures of merit for evaluating the image acquisition performance of clinical FFDM systems. It provides a way of creating an empirical model of the FFDM system that accounts for patient scatter, focal spot unsharpness, and detector blur. With the use of simulated signals, this method can predict system performance for a signal known exactly/background known exactly detection task with a limited number of images, therefore, it can be readily applied in a clinical environment.


Assuntos
Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Artefatos , Simulação por Computador , Humanos , Modelos Biológicos , Imagens de Fantasmas , Polimetil Metacrilato , Razão Sinal-Ruído
5.
Health Phys ; 98(2): 296-300, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20065697

RESUMO

A summary of recent developments in fingernail EPR dosimetry is presented in this paper. Until 2007, there had been a very limited number of studies of radiation-induced signals in fingernails. Although these studies showed some promising results, they were not complete with regard to the nature of non-radiation signals and the variability of dose dependence in fingernails. Recent study has shown that the two non-radiation components of the EPR spectrum of fingernails are originated from mechanical stress induced in the samples at their cut. The mechanical properties of fingernails were found to be very similar to those of a sponge; therefore, an effective way to eliminate their mechanical deformation is by soaking them in water. Stress caused by deformation can also significantly modify the dose response and radiation sensitivity. Consequently, it is critically important to take into account the mechanical stress in fingernail samples under EPR dose measurements. Obtained results have allowed formulating a prototype of a protocol for dose measurements in human fingernails.


Assuntos
Bioensaio/métodos , Bioensaio/tendências , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância de Spin Eletrônica/tendências , Unhas/química , Unhas/efeitos da radiação , Radiometria/métodos , Radiometria/tendências , Animais , Carga Corporal (Radioterapia) , Previsões , Humanos , Doses de Radiação
6.
Radiat Prot Dosimetry ; 131(2): 180-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18448436

RESUMO

An extension of dosemeter issue period brings significant economic and logistic benefits. Therefore, it is desirable to have an extended period as long as possible without significant loss of the quality of dose measurements. There are many studies devoted to the investigation of fading or reduction of the dose accumulated in dosemeters with time. However, this is one of many critical factors that need's to be taken into account when extending the dosemeter issue period. Background radiation is also a critical factor that needs to be appropriately accounted. In this report, a new approach has been suggested for evaluating the effect of background radiation on the lower limit of detection (LLD) of occupational radiation dose. This approach is based on the data collected from control dosemeters that are routinely used for subtraction of background radiation from occupational dose measurements. The results show that for LiF:Mg,Cu,P thermoluminescence dosemeters, variations in background radiation have a higher impact on the LLD than dose fading and the absolute value of background radiation. Although there is no significant dose fading in LiF:Mg,Cu,P for a dosemeter issue period up to 1 y, variations in background radiation during this period of time can significantly increase photon LLDs (up to 700 microSv) for workers operating in an environment of variable radiation background.


Assuntos
Radiação de Fundo , Monitoramento de Radiação , Modelos Estatísticos , Nêutrons , Exposição Ocupacional , Fótons , Monitoramento de Radiação/instrumentação , Dosimetria Termoluminescente/instrumentação , Fatores de Tempo
7.
Med Phys ; 34(6): 2220-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17654923

RESUMO

Fiber-optic-coupled radioluminescent (FOC) dosimeters are members of a new family of dosimeters that are finding increased clinical applications. This study provides the first characterization of a Cu doped quartz FOC dosimeter at diagnostic energies, specifically across the range of x-ray energies and intensities used in mammographies. We characterize the calibration factors, linearity, angular dependence, and reproducibility of the FOC dosimeters. The sensitive element of each dosimeter was coupled to a photon counting photomultiplier module via 1 m long optical fibers. A computer controlled interface permitted real-time monitoring of the dosimeter output and rapid data acquisition. The axial-angular responses for all dosimeter models show nearly uniform response without any marked decrease in sensitivity. However, the normal-to-axial angular response showed a marked decrease in sensitivity of about 0 degrees C and 180 degrees C. In most clinical applications, appropriate dosimeter positioning can minimize the contributions of the varying normal-to-axial response. The FOC dosimeters having the greatest sensitive length provided the greatest sensitivity, with greatest to lowest sensitivity observed for 4.0, 1.9, 1.6, and 1.1 mm length sensitive elements. The average sensitivity of the dosimeters varies linearly with sensitive volume (R2=95%) and as a function of tube potential and target/filter combinations, generally exhibiting an increased sensitivity for higher energies. The dosimeter sensitivity as a function of tube potential had an average increase of 4.72 +/- 2.04% for dosimeter models and three target-filter combinations tested (Mo/Mo, Mo/Rh, and Rh/Rh) over a range of 25-31 kVp. All dosimeter models exhibited a linear response (R2 > or = 0.997) to exposure for all target-filter combinations, tube potentials, and tube current-time product stations evaluated and demonstrated reproducibility within 2%. All of the dosimeters examined in this study provided a response adequate for the accurate measurement of doses in clinical mammography applications.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Medições Luminescentes/instrumentação , Mamografia/instrumentação , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Fibras Ópticas , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Med Phys ; 33(2): 514-20, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16532959

RESUMO

Five high-sensitivity metal oxide semiconductor field effect transistor dosimeters in the TN-502 and 1002 series (Thomson Nielsen Electronics Ltd., 25B, Northside Road, Ottawa, ON K2H8S1, Canada) were evaluated for use in the mammography x-ray energy range (22-50 kVp) as a tool to assist in the documentation of patient specific average glandular dose. The dosimeters were interfaced with the Patient Dose Verification System, model No. TN-RD 15, which consisted of a dosimeter reader and up to four dual bias power supplies. Two different dual bias power supplies were evaluated in this study, model No. TN-RD 22 in high-sensitivity mode and a very-high sensitivity prototype. Each bias supply accommodates up to five dosimeters for 20 dosimeters per system. Sensitivity of detectors, defined as the mV/C kg(-1), was measured free in air with the bubble side of the dosimeter facing the x-ray field with a constant exposure. All dosimeter models' angular response showed a marked decrease in response when oriented between 120 degrees and 150 degrees and between at 190 degrees and 220 degrees relative to the incident beam. Sensitivity was evaluated for Mo/Mo, Mo/Rh, and Rh/Rh target-filter combinations. The individual dosimeter model sensitiVity was 4.45 x 10(4) mV/C kg(-1) (11.47 mV R(-1)) for TN-502RDS(micro); 5.93 x 10(4) mV per C kg(-1) (15.31 mV R(-1)) for TN-1002RD; 6.06 x 10(4) mV/C kg(-1) (15.63 mV R(-1)) for TN-1002RDI; 9.49 x 10(4) mV per C kg(-1) (24.49 mV R(-1)) for TN-1002RDM (micro); and 11.20 x 10(4) mV/C kg(-1) (28.82 mV R(-1)) for TN-1002RDS (micro). The energy response is presented and is observed to vary with dosimeter model, generally increasing with tube potential through the mammography energy range. An intercomparison of the high-sensitivity mode of TN-RD-22 was made to the very-high sensitivity bias power supply using a Mo/Mo target-filter. The very-high sensitivity-bias power supply increased dosimeter response by 1.45 +/- 0.04 for dosimeter models TN-1002RD and TN-1002RDM. The responses of all dosimeter models were found to be linear for tube potentials of between 24 and 48 kVp. Dosimeters showed a reproducibility varying from 15.5% to 31.8%. depending on the model of dosimeter. Micro MOSFETS model Nos. TN-1002RDS and TN-1002RDM used in conjunction with their respective high-sensitivity and ultrahigh-sensitivity bias supplies provided the highest sensitivity response of the models evaluated. Either micro MOSFETS model No. TN-1002RDS or TN-1002RDM used in conjunction with the appropriate bias supply provide the best choice for clinical mammography applications. Under these conditions, MOSFET dosimeters can provide a viable option as a dosimeter in the mammography energy range (22-50 kVp). The clinical application of MOSFET dosimeters must take into account the energy dependence and reproducibility to ensure accurate measurements.


Assuntos
Mamografia/métodos , Metais , Óxidos , Radiometria/instrumentação , Semicondutores , Humanos , Doses de Radiação , Radiometria/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transistores Eletrônicos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA