Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(24): 6383-6391, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859759

RESUMO

Recent progress in the design of carbon nanostructures exhibiting strong multiphoton-excited emission opens new pathways to explore the self-organization of lipids found in living organisms. Phospholipid-based lyotropic myelin figures (MFs) are promising materials as simplified models of biomembranes due to their structural resemblance to a multilamellar sheath insulating the axon. This study demonstrates the possibility of selective labeling of MFs by strongly emitting multicolor phloroglucinol-derived carbon nanodots (PG CNDs). Such dopants are efficiently excited by visible and near-infrared light; therefore, one- and two-photon fluorescence microscopies are incorporated to gain 3D insights into the MFs. Combining nondestructive fluorescence microscopy and spectroscopy techniques along with polarized light microscopy gives details on the stability and morphology of lipidic mesophases. Our findings suggest that PG CNDs can be a viable and simple alternative to conventional fluorescent lipid stains to image biologically relevant phospholipid-based structures.

2.
ACS Appl Mater Interfaces ; 15(27): 32717-32731, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366586

RESUMO

Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures.


Assuntos
Carbono , Ácido Fólico , Carbono/química , Bainha de Mielina , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos
3.
Biochim Biophys Acta Gen Subj ; 1867(5): 130327, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36791829

RESUMO

BACKGROUND: Otoliths and otoconia are calcium carbonate biomineral structures that form in the inner ear of fish and humans, respectively. The formation of these structures is tightly linked to the formation of an organic matrix framework with otolin-1, a short collagen-like protein from the C1q family as one of its major constituents. METHODS: In this study, we examined the activity of recombinant otolin-1 originating from Danio rerio and Homo sapiens on calcium carbonate bioinspired mineralization with slow-diffusion method and performed crystals characterization with scanning electron microscopy, two-photon excited fluorescence microscopy, confocal laser scanning microscopy and micro-Raman spectroscopy. RESULTS: We show that both proteins are embedded in the core of CaCO3 crystals that form through the slow-diffusion mineralization method. Both of them influence the morphology but do not change the polymorphic mineral phase. D.rerio otolin-1 also closely adheres to the crystal surface. GENERAL SIGNIFICANCE: The results suggest, that otolin-1 is not a passive scaffold, but is directly involved in regulating the morphology of the resulting calcium carbonate biocrystals.


Assuntos
Carbonato de Cálcio , Membrana dos Otólitos , Animais , Humanos , Membrana dos Otólitos/química , Membrana dos Otólitos/metabolismo , Carbonato de Cálcio/química , Proteínas da Matriz Extracelular/metabolismo , Peixe-Zebra/metabolismo
4.
J Phys Chem B ; 124(52): 11974-11979, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33347307

RESUMO

Lyotropic myelin figures (MFs), i.e., long cylindrical structures formed by certain surfactants, owe their name to their resemblance to the biological membrane that covers nerve fibers. Herein, we used a strong bilayer-forming zwitterionic phospholipid stained by the Nile Red dye to study lamellar mesophases. Polarized optical microscopy and fluorescence confocal microscopy allowed us to investigate the morphology of myelin structures and determine the orientational order of amphiphilic molecules. The cross-sectional views reveal significant differences in the configurations of MFs within the liquid crystalline cell, as well as the details of a spontaneous and stimulated formation of branched lipid tubes. Our results provide insights into small-scale morphology and out-of-equilibrium structural changes in the multilamellar structures.


Assuntos
Corantes Fluorescentes , Bainha de Mielina , Estudos Transversais , Fosfolipídeos , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA