Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(8): 4708-4718, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35797603

RESUMO

In optically excited states in molecules and materials, coupling between local electron spins plays an important role for their photoemission properties and is interesting for potential applications in quantum information processing. Recently, it was experimentally demonstrated that the photogenerated local spins in donor-acceptor metal complexes can interact with the spin of an attached radical, resulting in a spin-coupling-dependent mixing of excited doublet states, which controls the local spin density distributions on donor, acceptor, and radical subunits in optically excited states. In this work, we propose an energy-difference scheme to evaluate spin coupling in optically excited states, using unrestricted and spin-flip simplified time-dependent density functional theory. We apply it to three platinum complexes which have been studied experimentally to validate our methodology. We find that all computed coupling constants are in excellent agreement with the experimental data. In addition, we show that the spin coupling between donor and acceptor in the optically excited state can be fine-tuned by replacing platinum with palladium and zinc in the structure. Besides the two previously discussed excited doublet states (one bright and one dark), our calculations reveal a third, bright excited doublet state which was not considered previously. This third state possesses the inverse spin polarization on donor and acceptor with respect to the previously studied bright doublet state and is by an order of magnitude brighter, which might be interesting for optically controlling local spin polarizations with potential applications in spin-only information transfer and manipulation of connected qubits.

2.
Adv Mater ; 33(31): e2101549, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165866

RESUMO

Fully inorganic, colloidal gold nanoclusters (NCs) constitute a new class of nanomaterials that are clearly distinguishable from their commonly studied metal-organic ligand-capped counterparts. As their synthesis by chemical methods is challenging, details about their optical properties remain widely unknown. In this work, laser fragmentation in liquids is performed to produce fully inorganic and size-controlled colloidal gold NCs with monomodal particle size distributions and an fcc-like structure. Results reveal that these NCs exhibit highly pronounced photoluminescence with quantum yields of 2%. The emission behavior of small (2-2.5 nm) and ultrasmall (<1 nm) NCs is significantly different and dominated by either core- or surface-based emission states. It is further verified that emission intensities are a function of the surface charge density, which is easily controllable by the pH of the surrounding medium. This experimentally observed correlation between surface charge and photoluminescence emission intensity is confirmed by density functional theoretical simulations, demonstrating that fully inorganic NCs provide an appropriate material to bridge the gap between experimental and computational studies of NCs. The presented study deepens the understanding of electronic structures in fully inorganic colloidal gold NCs and how to systematically tune their optical properties via surface charge density and particle size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA