Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
1.
Neurol Clin Pract ; 14(3): e200291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720951

RESUMO

Background and Objectives: Structural brain MRI and blood-based phosphorylated tau (p-tau) measures are among the least invasive and least expensive Alzheimer's disease (AD) biomarkers to date. The extent to which these biomarkers may outperform one another in predicting future Alzheimer dementia diagnosis is poorly understood, however. This study investigated 2 specific AD biomarkers, i.e., a cortical thickness signature of AD (AD-CT) and plasma p-tau217, for predicting Alzheimer dementia. Methods: Data came from community-dwelling older participants of the Religious Orders Study or the Rush Memory and Aging Project. AD-CT was obtained from 3T MRI scans using a magnetization-prepared rapid acquisition gradient echo sequence and by averaging thickness from previously identified cortical regions implicated in AD. Plasma p-tau217 was quantified using an immunoassay developed by Lilly Research Laboratories on the MSD platform. Both MRI scans and blood specimens were collected at the same visits, and subsequent diagnoses of Alzheimer dementia were determined through annual detailed clinical evaluations. Cox proportional hazards models examined the associations of the 2 biomarkers with incident Alzheimer dementia, and prediction accuracy was assessed using c-statistics. Results: A total of 198 older adults, on average 84 years of age, were included. Over a mean follow-up of 4 years, 60 (30%) individuals developed Alzheimer dementia. AD-CT (hazard ratio: 1.71, 95% CI 1.26-2.31) and separately plasma p-tau217 (hazard ratio: 2.57, 95% CI 1.83-3.61) were associated with incident Alzheimer dementia. The c-statistic for prediction accuracy was consistently higher for plasma p-tau217 (between 0.74 and 0.81) than AD-CT (between 0.70 and 0.75) across a range of time horizons. Furthermore, with both biomarkers included in the same model, there was only modest improvement in the c-statistic due to AD-CT. Discussion: Plasma p-tau217 outperforms an imaging-based cortical thickness signature of AD in predicting future Alzheimer dementia diagnosis. Furthermore, the AD cortical thickness signature adds little to the prediction accuracy above and beyond plasma p-tau217.

2.
Neurobiol Aging ; 140: 81-92, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38744041

RESUMO

Limbic predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is common in older adults and is associated with neurodegeneration, cognitive decline and dementia. In this MRI and pathology investigation we tested the hypothesis that LATE-NC is associated with abnormalities in white matter structural integrity and connectivity of a network of brain regions typically harboring TDP-43 inclusions in LATE, referred to here as the "LATE-NC network". Ex-vivo diffusion MRI and detailed neuropathological data were collected on 184 community-based older adults. Linear regression revealed an independent association of higher LATE-NC stage with lower diffusion anisotropy in a set of white matter connections forming a pattern of connectivity that is consistent with the stereotypical spread of this pathology in the brain. Graph theory analysis revealed an association of higher LATE-NC stage with weaker integration and segregation in the LATE-NC network. Abnormalities were significant in stage 3, suggesting that they are detectable in later stages of the disease. Finally, LATE-NC network abnormalities were associated with faster cognitive decline, specifically in episodic and semantic memory.

3.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712030

RESUMO

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

4.
Commun Biol ; 7(1): 591, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760483

RESUMO

Late onset Alzheimer's disease (AD) is a progressive neurodegenerative disease, with brain changes beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within the brain's major cell-types. We show that these learned modules are biologically meaningful through the identification of new and relevant enriched signaling cascades. The predictive nature of our modules, especially in microglia, allows us to infer each subject's progression along a disease pseudo-trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to enriched module gene programs. Our collective findings advocate for a transition from cell-type-specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the roles of recently reported genome-wide AD risk loci.


Assuntos
Doença de Alzheimer , Progressão da Doença , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/metabolismo , Microglia/patologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
5.
Artigo em Inglês | MEDLINE | ID: mdl-38757945

RESUMO

BACKGROUND: Dementia results from multiple neuropathologies causing cognitive impairment sufficiently severe to impact functional status. However, these pathologies and functional impairment are common in persons without dementia. We examined the association of AD and multiple other neuropathologies with instrumental and basic activities of daily living in persons with and without dementia. METHODS: Participants were 1,509 deceased from the Religious Orders Study or Rush Memory and Aging Project. Pathologic AD and three other AD indices were examined, in addition to four non-AD neurodegenerative pathologies: cerebral amyloid angiopathy (CAA), hippocampal sclerosis, TDP-43 and Lewy bodies, and four cerebrovascular pathologies: gross- and microinfarctions, athero- and arteriolosclerosis. Functional assessment included Lawton and Katz Index Instrumental and Basic Activities of Daily Living (IADL and BADL). Ordinal regression models adjusted for age, sex, and education were used to examine the association of neuropathologies with IADL and BADL. RESULTS: AD and the other neuropathologies were associated with impaired IADL (all Ps<0.001) and with impaired BADL (Ps<0.01), except for atherosclerosis and CAA which were not associated with BADL. The effects of most neuropathologies were largely affected by dementia. However, small effects on IADL remained for PHFtau tangles after adjusting models for dementia. Direct effects of gross infarcts on IADL and BADL, and of microinfarcts on BADL remained unchanged after adjusting the models for dementia. CONCLUSION: AD and all other neuropathologies are strongly associated with functional disability. The association of most neuropathologies with disability was eliminated or attenuated by dementia, except for gross infarcts and microinfarcts.

6.
Commun Biol ; 7(1): 569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750228

RESUMO

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Proteínas tau , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Feminino , Masculino , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Idoso , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Idoso de 80 Anos ou mais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Astrócitos/metabolismo
7.
Mol Neurodegener ; 19(1): 41, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760857

RESUMO

Recent evidence suggests that Alzheimer's disease (AD) genetic risk variants (rs1582763 and rs6591561) of the MS4A locus are genome-wide significant regulators of soluble TREM2 levels such that the minor allele of the protective variant (rs1582763) is associated with higher sTREM2 and lower AD risk while the minor allele of (rs6591561) relates to lower sTREM2 and higher AD risk. Our group previously found that higher sTREM2 relates to higher Aß40, worse blood-brain barrier (BBB) integrity (measured with the CSF/plasma albumin ratio), and higher CSF tau, suggesting strong associations with amyloid abundance and both BBB and neurodegeneration complicate interpretation. We expand on this work by leveraging these common variants as genetic tools to tune the interpretation of high CSF sTREM2, and by exploring the potential modifying role of these variants on the well-established associations between CSF sTREM2 as well as TREM2 transcript levels in the brain with AD neuropathology. Biomarker analyses leveraged data from the Vanderbilt Memory & Aging Project (n = 127, age = 72 ± 6.43) and were replicated in the Alzheimer's Disease Neuroimaging Initiative (n = 399, age = 73 ± 7.39). Autopsy analyses were performed leveraging data from the Religious Orders Study and Rush Memory and Aging Project (n = 577, age = 89 ± 6.46). We found that the protective variant rs1582763 attenuated the association between CSF sTREM2 and Aß40 (ß = -0.44, p-value = 0.017) and replicated this interaction in ADNI (ß = -0.27, p = 0.017). We did not observe this same interaction effect between TREM2 mRNA levels and Aß peptides in brain (Aß total ß = -0.14, p = 0.629; Aß1-38, ß = 0.11, p = 0.200). In contrast to the effects on Aß, the minor allele of this same variant seemed to enhance the association with blood-brain barrier dysfunction (ß = 7.0e-4, p = 0.009), suggesting that elevated sTREM2 may carry a much different interpretation in carriers vs. non-carriers of this allele. When evaluating the risk variant (rs6591561) across datasets, we did not observe a statistically significant interaction against any outcome in VMAP and observed opposing directions of associations in ADNI and ROS/MAP on Aß levels. Together, our results suggest that the protective effect of rs1582763 may act by decoupling the associations between sTREM2 and amyloid abundance, providing important mechanistic insight into sTREM2 changes and highlighting the need to incorporate genetic context into the analysis of sTREM2 levels, particularly if leveraged as a clinical biomarker of disease in the future.


Assuntos
Doença de Alzheimer , Biomarcadores , Glicoproteínas de Membrana , Receptores Imunológicos , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Idoso , Masculino , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Feminino , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Predisposição Genética para Doença
8.
JMIR Public Health Surveill ; 10: e55211, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713911

RESUMO

BACKGROUND: The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE: We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS: We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS: During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS: Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.


Assuntos
Disfunção Cognitiva , Demência , Descanso , Humanos , Feminino , Masculino , Disfunção Cognitiva/epidemiologia , Pessoa de Meia-Idade , Idoso , Demência/epidemiologia , Estudos Prospectivos , Descanso/fisiologia , Adulto , Reino Unido/epidemiologia , Actigrafia , Fatores de Risco , Ritmo Circadiano/fisiologia
9.
J Alzheimers Dis ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38759006

RESUMO

Background: US-based Latinos have lower education and income combined with higher health risks than non-Latino whites, but often 'paradoxically' evidence better health-related outcomes. Less work has investigated this paradox for cognitive-related outcomes despite nativity diversity. Objective: We evaluated cognitive aging within older Latinos of diverse nativity currently living in the US and participating in Rush Alzheimer's Disease Center studies. Methods: Participants without baseline dementia, who completed annual neuropsychological assessments (in English or Spanish) were grouped by US-born (n = 117), Mexico-born (n = 173), and born in other Latin American regions (LAr-born = 128). Separate regression models examined associations between nativity and levels of (N = 418) or change in (n = 371; maximum follow-up ∼16 years) global and domain-specific cognition. Results: Demographically-adjusted linear regression models indicated that foreign-born nativity was associated with lower levels of global cognition and select cognitive domains compared to US-born Latinos. No associations of nativity with cognitive decline emerged from demographically-adjusted mixed-effects models; however, Mexico-born nativity appeared associated with slower declines in working memory compared to other nativity groups (p-values ≥ 0.051). Mexico-born Latinos had relatively higher vascular burden and lower education levels than other nativity groups; however, this did not alter results. Conclusions: Nativity differences in baseline cognition may be due, in part, to accumulated stressors related to immigration and acculturation experienced by foreign-born Latinos which may hasten meeting criteria for dementia later in life. In contrast, Mexico-born participants' slower working memory declines, taken in the context of other participant characteristics including vascular burden, suggests the Hispanic Paradox may relate to factors with the potential to affect cognition.

10.
Neurobiol Aging ; 140: 93-101, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38761538

RESUMO

Platelet activation of protease-activated receptor 4 (PAR4) and thrombin are at the top of a chain of events leading to fibrin deposition, microinfarcts, blood-brain barrier disruption, and inflammation. We evaluated mRNA expression of the PAR4 gene F2RL3 in human brain and global cognitive performance in participants with and without cognitive impairment or dementia. Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). F2RL3 mRNA was elevated in AD cases and was associated with worse retrospective longitudinal cognitive performance. Moreover, F2RL3 expression interacted with clinical AD diagnosis on longitudinal cognition whereas this relationship was attenuated in individuals without cognitive impairment. Additionally, when adjusting for the effects of AD neuropathology, F2RL3 expression remained a significant predictor of cognitive decline. F2RL3 expression correlated positively with transcript levels of proinflammatory markers including TNFα, IL-1ß, NFκB, and fibrinogen α/ß/γ. Together, these results reveal that F2RL3 mRNA expression is associated with multiple AD-relevant outcomes and its encoded product, PAR4, may play a role in disease pathogenesis.

11.
Transl Psychiatry ; 14(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575567

RESUMO

Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our cohort: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissues. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly associated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high-impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.


Assuntos
Doença de Alzheimer , Apatia , Transtornos Psicóticos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Sintomas Comportamentais
12.
J Alzheimers Dis ; 99(1): 105-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607758

RESUMO

 Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Humanos , Locus Cerúleo/patologia , Doença de Alzheimer/patologia , Feminino , Masculino , Idoso de 80 Anos ou mais , Idoso , Neurônios/patologia , Neurônios/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Contagem de Células
13.
Nat Aging ; 4(5): 625-637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664576

RESUMO

Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.


Assuntos
Doença de Alzheimer , Cognição , Locus Cerúleo , Tomografia por Emissão de Pósitrons , Proteínas tau , Locus Cerúleo/metabolismo , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Cognição/fisiologia , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Lobo Temporal/metabolismo , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
14.
Sci Rep ; 14(1): 9038, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641631

RESUMO

The Mini-Mental State Examination (MMSE) is a widely employed screening tool for the severity of cognitive impairment. Among the MMSE items, the pentagon copying test (PCT) requires participants to accurately replicate a sample of two interlocking pentagons. While the PCT is traditionally scored on a binary scale, there have been limited developments of granular scoring scale to assess task performance. In this paper, we present a novel three-stage algorithm, called Quantification of Interlocking Pentagons (QIP) which quantifies PCT performance by computing the areas of individual pentagons and their intersection areas, and a balance ratio between the areas of the two individual pentagons. The three stages of the QIP algorithm include: (1) detection of line segments, (2) unraveling of the interlocking pentagons, and (3) quantification of areas. A set of 497 PCTs from 84 participants including their baseline and follow-up PCTs from the Rush Memory and Aging Project was selected blinded about their cognitive and clinical status. Analysis of the quantified data revealed a significant inverse relationship between age and balance ratio (beta = - 0.49, p = 0.0033), indicating that older age was associated with a smaller balance ratio. In addition, balance ratio was associated with perceptual speed (r = 0.71, p = 0.0135), vascular risk factors (beta = - 3.96, p = 0.0269), and medical conditions (beta = - 2.78, p = 0.0389). The QIP algorithm can serve as a useful tool for enhancing the scoring of performance in the PCT.


Assuntos
Disfunção Cognitiva , Humanos , Testes Neuropsicológicos , Testes de Estado Mental e Demência , Disfunção Cognitiva/diagnóstico
15.
Front Immunol ; 15: 1337831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590520

RESUMO

Introduction: T cells, known for their ability to respond to an enormous variety of pathogens and other insults, are increasingly recognized as important mediators of pathology in neurodegeneration and other diseases. T cell gene expression phenotypes can be regulated by disease-associated genetic variants. Many complex diseases are better represented by polygenic risk than by individual variants. Methods: We first compute a polygenic risk score (PRS) for Alzheimer's disease (AD) using genomic sequencing data from a cohort of Alzheimer's disease (AD) patients and age-matched controls, and validate the AD PRS against clinical metrics in our cohort. We then calculate the PRS for several autoimmune disease, neurological disorder, and immune function traits, and correlate these PRSs with T cell gene expression data from our cohort. We compare PRS-associated genes across traits and four T cell subtypes. Results: Several genes and biological pathways associated with the PRS for these traits relate to key T cell functions. The PRS-associated gene signature generally correlates positively for traits within a particular category (autoimmune disease, neurological disease, immune function) with the exception of stroke. The trait-associated gene expression signature for autoimmune disease traits was polarized towards CD4+ T cell subtypes. Discussion: Our findings show that polygenic risk for complex disease and immune function traits can have varying effects on T cell gene expression trends. Several PRS-associated genes are potential candidates for therapeutic modulation in T cells, and could be tested in in vitro applications using cells from patients bearing high or low polygenic risk for AD or other conditions.


Assuntos
Doença de Alzheimer , Doenças Autoimunes , Humanos , Doença de Alzheimer/genética , Fenótipo , Risco , Transdução de Sinais/genética
16.
Metallomics ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38664065

RESUMO

Mercury is a well-recognized environmental contaminant and neurotoxin, having been associated with a number of deleterious neurological conditions including neurodegenerative diseases, such as Alzheimer's disease. To investigate how mercury and other metals behave in the brain, we used synchrotron micro-X-ray fluorescence to map the distribution pattern and quantify concentrations of metals in human brain. Brain tissue was provided by the Rush Alzheimer's Disease Center and samples originated from individuals diagnosed with Alzheimer's disease and without cognitive impairment. Data were collected at the 2-ID-E beamline at the Advanced Photon Source at Argonne National Laboratory with an incident beam energy of 13 keV. Course scans were performed at low resolution to determine gross tissue features, after which smaller regions were selected to image at higher resolution. The findings revealed (1) the existence of mercury particles in the brain samples of two subjects; (2) co-localization and linear correlation of mercury and selenium in all particles; (3) co-localization of these particles with zinc structures; and (4) association with sulfur in some of these particles. These results suggest that selenium and sulfur may play protective roles against mercury in the brain, potentially binding with the metal to reduce the induced toxicity, although at different affinities. Our findings call for further studies to investigate the relationship between mercury, selenium, and sulfur, as well as the potential implications in Alzheimer's disease and related dementias.


Assuntos
Doença de Alzheimer , Encéfalo , Mercúrio , Selênio , Espectrometria por Raios X , Síncrotrons , Humanos , Mercúrio/análise , Mercúrio/metabolismo , Selênio/análise , Selênio/metabolismo , Encéfalo/metabolismo , Espectrometria por Raios X/métodos , Doença de Alzheimer/metabolismo , Idoso , Masculino , Feminino , Zinco/análise , Zinco/metabolismo
17.
Lancet Healthy Longev ; 5(5): e336-e345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582095

RESUMO

BACKGROUND: Many studies have reported that impaired gait precedes cognitive impairment in older people. We aimed to characterise the time course of cognitive and motor decline in older individuals and the association of these declines with the pathologies of Alzheimer's disease and related dementias. METHODS: This multicohort study used data from three community-based cohort studies (Religious Orders Study, Rush Memory and Aging Project, and Minority Aging Research Study, all in the USA). The inclusion criteria for all three cohorts were no clinical dementia at the time of enrolment and consent to annual clinical assessments. Eligible participants consented to post-mortem brain donation and had post-mortem pathological assessments and three or more repeated annual measures of cognition and motor functions. Clinical and post-mortem data were analysed using functional mixed-effects models. Global cognition was based on 19 neuropsychological tests, a hand strength score was based on grip and pinch strength, and a gait score was based on the number of steps and time to walk 8 feet and turn 360°. Brain pathologies of Alzheimer's disease and related dementias were assessed at autopsy. FINDINGS: From 1994 to 2022, there were 1570 eligible cohort participants aged 65 years or older, 1303 of whom had cognitive and motor measurements and were included in the analysis. Mean age at death was 90·3 years (SD 6·3), 905 (69%) participants were female, and 398 (31%) were male. Median follow-up time was 9 years (IQR 5-11). On average, cognition was stable from 25 to 15 years before death, when cognition began to decline. By contrast, gait function and hand strength declined during the entire study. The combinations of pathologies of Alzheimer's disease and related dementias associated with cognitive and motor decline and their onsets of associations varied; only tau tangles, Parkinson's disease pathology, and macroinfarcts were associated with decline of all three phenotypes. Tau tangles were significantly associated with cognitive decline, gait function decline, and hand function decline (p<0·0001 for each); however, the association with cognitive decline persisted for more than 11 years before death, but the association with hand strength only began 3·57 years before death and the association with gait began 3·49 years before death. By contrast, the association of macroinfarcts with declining gait function began 9·25 years before death (p<0·0001) compared with 6·65 years before death (p=0·0005) for cognitive decline and 2·66 years before death (p=0·024) for decline in hand strength. INTERPRETATION: Our findings suggest that average motor decline in older adults precedes cognitive decline. Macroinfarcts but not tau tangles are associated with declining gait function that precedes cognitive decline. This suggests the need for further studies to test if gait impairment is a clinical proxy for preclinical vascular cognitive impairment. FUNDING: National Institutes of Health.


Assuntos
Disfunção Cognitiva , Humanos , Masculino , Feminino , Idoso , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Idoso de 80 Anos ou mais , Estudos de Coortes , Encéfalo/patologia , Encéfalo/fisiopatologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Testes Neuropsicológicos/estatística & dados numéricos , Envelhecimento/patologia , Envelhecimento/fisiologia , Marcha/fisiologia , Cognição/fisiologia , Fatores de Tempo , Força da Mão/fisiologia
18.
Hum Mol Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679805

RESUMO

Late-Onset Alzheimer's Disease (LOAD) is a heterogeneous neurodegenerative disorder with complex etiology and high heritability. Its multifactorial risk profile and large portions of unexplained heritability suggest the involvement of yet unidentified genetic risk factors. Here we describe the "whole person" genetic risk landscape of polygenic risk scores for 2218 traits in 2044 elderly individuals and test if novel eigen-PRSs derived from clustered subnetworks of single-trait PRSs can improve the prediction of LOAD diagnosis, rates of cognitive decline, and canonical LOAD neuropathology. Network analyses revealed distinct clusters of PRSs with clinical and biological interpretability. Novel eigen-PRSs (ePRS) from these clusters significantly improved LOAD-related phenotypes prediction over current state-of-the-art LOAD PRS models. Notably, an ePRS representing clusters of traits related to cholesterol levels was able to improve variance explained in a model of the brain-wide beta-amyloid burden by 1.7% (likelihood ratio test P = 9.02 × 10-7). All associations of ePRS with LOAD phenotypes were eliminated by the removal of APOE-proximal loci. However, our association analysis identified modules characterized by PRSs of high cholesterol and LOAD. We believe this is due to the influence of the APOE region from both PRSs. We found significantly higher mean SNP effects for LOAD in the intersecting APOE region SNPs. Combining genetic risk factors for vascular traits and dementia could improve current single-trait PRS models of LOAD, enhancing the use of PRS in risk stratification. Our results are catalogued for the scientific community, to aid in generating new hypotheses based on our maps of clustered PRSs and associations with LOAD-related phenotypes.

19.
Alzheimers Dement (Amst) ; 16(2): e12566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595913

RESUMO

INTRODUCTION: The presence of multiple cardiometabolic diseases (CMDs) has been linked to increased dementia risk, but the combined influence of CMDs on cognition and brain structure across the life course is unclear. METHODS: In the UK Biobank, 46,562 dementia-free participants completed a cognitive test battery at baseline and a follow-up visit 9 years later, at which point 39,306 also underwent brain magnetic resonance imaging. CMDs (diabetes, heart disease, and stroke) were ascertained from medical records. Data were analyzed using age-stratified (middle age [< 60] versus older [≥ 60]) mixed-effects models and linear regression. RESULTS: A higher number of CMDs was associated with significantly steeper global cognitive decline in older (ß = -0.008; 95% confidence interval: -0.012, -0.005) but not middle age. Additionally, the presence of multiple CMDs was related to smaller total brain volume, gray matter volume, white matter volume, and hippocampal volume and larger white matter hyperintensity volume, even in middle age. DISCUSSION: CMDs are associated with cognitive decline in older age and poorer brain structural health beginning already in middle age. Highlights: We explored the association of CMDs with cognitive decline and brain MRI measures.CMDs accelerated cognitive decline in older (≥60y) but not middle (<60) age.CMDs were associated with poorer brain MRI parameters in both middle and older age.Results highlight the connection between CMDs and cognitive/brain aging.

20.
Stem Cell Res Ther ; 15(1): 104, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600587

RESUMO

BACKGROUND: Microglia, the brain's resident immune cells, play vital roles in brain development, and disorders like Alzheimer's disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However, existing iMG generation protocols face challenges, such as prolonged differentiation time, lack of detailed characterization, and limited gene function investigation via CRISPR-Cas9. METHODS: Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step, 20-day process, producing iMG with a normal karyotype. We confirmed the iMG's authenticity and quality through single-cell RNA sequencing, chromatin accessibility profiles (ATAC-Seq), proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further, we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . RESULTS: Our method generates iMG that closely align with human primary microglia in terms of transcriptomic, proteomic, and chromatin accessibility profiles. Functionally, these iMG exhibit Ca2 + transients, cytokine driven migration, immune responses to inflammatory signals, and active phagocytosis of CNS related substrates including synaptosomes, amyloid beta and myelin. Significantly, the toolkit facilitates repeated iMG harvesting, essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia, positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. CONCLUSIONS: Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform, our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism, the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Microglia/metabolismo , Proteômica , Peptídeos beta-Amiloides , Genômica , Doença de Alzheimer/genética , Cromatina/genética , Cromatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA