Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531685

RESUMO

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5,757 participants reported 17,572 Ag-RDT results and completed 12,674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR-positive. Overall sensitivity and specificity were 53.0% (95% CI: 49.6-56.4%) and 98.8% (98.5-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4 to 7 days post-symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSION: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high-risk for SARS-CoV-2 infection.

2.
Vaccine ; 42(6): 1332-1341, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38307746

RESUMO

Vaccine effectiveness (VE) studies utilizing the test-negative design are typically conducted in clinical settings, rather than community populations, leading to bias in VE estimates against mild disease and limited information on VE in healthy young adults. In a community-based university population, we utilized data from a large SARS-CoV-2 testing program to estimate relative VE of COVID-19 mRNA vaccine primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection from September 2021 to July 2022. We used the test-negative design and logistic regression implemented via generalized estimating equations adjusted for age, calendar time, prior SARS-CoV-2 infection, and testing frequency (proxy for test-seeking behavior) to estimate relative VE. Analyses included 2,218 test-positive cases (59 % received monovalent booster dose) and 9,615 test-negative controls (62 %) from 9,066 individuals, with median age of 21 years, mostly students (71 %), White (56 %) or Asian (28 %), and with few comorbidities (3 %). More cases (23 %) than controls (6 %) had COVID-19-like illness. Estimated adjusted relative VE of primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection was 40 % (95 % CI: 33-47 %) during the overall analysis period and 46 % (39-52 %) during the period of Omicron circulation. Relative VE was greater for those without versus those with prior SARS-CoV-2 infection (41 %, 34-48 % versus 33 %, 9 %-52 %, P < 0.001). Relative VE was also greater in the six months after receiving a booster dose (41 %, 33-47 %) compared to more than six months (27 %, 8-42 %), but this difference was not statistically significant (P = 0.06). In this relatively young and healthy adult population, an mRNA monovalent booster dose provided increased protection against symptomatic SARS-CoV-2 infection, overall and with the Omicron variant. University testing programs may be utilized for estimating VE in healthy young adults, a population that is not well-represented by routine VE studies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto Jovem , Humanos , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Universidades , SARS-CoV-2 , RNA Mensageiro
3.
Front Pediatr ; 11: 1198278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484765

RESUMO

Background: Respiratory viruses might influence Streptococcus pneumoniae nasal carriage and subsequent disease risk. We estimated the association between common respiratory viruses and semiquantitative S. pneumoniae nasal carriage density in a household setting before and during the COVID-19 pandemic. Methods: From November 2019-June 2021, we enrolled participants in a remote household surveillance study of respiratory pathogens. Participants submitted weekly reports of acute respiratory illness (ARI) symptoms. Mid-turbinate or anterior nasal swabs were self-collected at enrollment, when ARI occurred, and, in the second year of the study only, from household contacts after SARS-CoV-2 was detected in a household member. Specimens were tested using multiplex reverse-transcription PCR for respiratory pathogens, including S. pneumoniae, rhinovirus, adenovirus, common human coronavirus, influenza A/B virus, respiratory syncytial virus (RSV) A/B, human metapneumovirus, enterovirus, and human parainfluenza virus. We estimated differences in semiquantitative S. pneumoniae nasal carriage density, estimated by the inverse of S. pneumoniae relative cycle threshold (Crt) values, with and without viral detection for any virus and for specific respiratory viruses using linear generalized estimating equations of S. pneumoniae Crt values on virus detection adjusted for age and swab type and accounting for clustering of swabs within households. Results: We collected 346 swabs from 239 individuals in 151 households that tested positive for S. pneumoniae (n = 157 with and 189 without ≥1 viruses co-detected). Difficulty breathing, cough, and runny nose were more commonly reported among individuals with specimens with viral co-detection compared to without (15%, 80% and 93% vs. 8%, 57%, and 51%, respectively) and ear pain and headache were less commonly reported (3% and 26% vs. 16% and 41%, respectively). For specific viruses among all ages, semiquantitative S. pneumoniae nasal carriage density was greater with viral co-detection for enterovirus, RSV A/B, adenovirus, rhinovirus, and common human coronavirus (P < 0.01 for each). When stratified by age, semiquantitative S. pneumoniae nasal carriage density was significantly greater with viral co-detection among children aged <5 (P = 0.002) and 5-17 years (P = 0.005), but not among adults aged 18-64 years (P = 0.29). Conclusion: Detection of common respiratory viruses was associated with greater concurrent S. pneumoniae semiquantitative nasal carriage density in a household setting among children, but not adults.

4.
Am J Public Health ; 113(7): 795-804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37200605

RESUMO

Objectives. To assess the impact of Washington State's 2019 Engrossed House Bill (EHB) 1638-which removed measles, mumps, and rubella (MMR) personal belief exemptions-on MMR vaccine series completion and exemption rates in K-12 students. Methods. We used interrupted time-series analyses to examine changes in MMR vaccine series completion rates before and after EHB 1638 was passed and the χ2 test for differences in exemption rates. Results. EHB 1638 implementation was associated with a 5.4% relative increase in kindergarten MMR vaccine series completion rates (95% confidence interval = 3.8%, 7.1%; P ≤ .001), and results were similar with Oregon as a control state (no change observed in Oregon; P = .68). MMR exemptions overall decreased 41% (from 3.1% in 2018-2019 to 1.8% in 2019-2020; P ≤ .001), and religious exemptions increased 367% (from 0.3% to 1.4%; P ≤ .001). Conclusions. EHB 1638 was associated with an increase in MMR vaccine series completion rates and a decrease in any MMR exemption. However, effects were partially offset by an increase in religious exemption rates. Public Health Implications. Removal of personal belief exemptions for the MMR immunization requirement only may be an effective approach to increase MMR vaccine coverage rates statewide and among underimmunized communities. (Am J Public Health. 2023;113(7):795-804. https://doi.org/10.2105/AJPH.2023.307285).


Assuntos
Sarampo , Caxumba , Rubéola (Sarampo Alemão) , Humanos , Vacina contra Sarampo-Caxumba-Rubéola , Washington , Caxumba/prevenção & controle , Vacinação , Política de Saúde , Sarampo/prevenção & controle , Instituições Acadêmicas , Rubéola (Sarampo Alemão)/prevenção & controle
6.
Nat Commun ; 13(1): 5240, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068236

RESUMO

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Genoma Viral/genética , Genômica , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Universidades
7.
Microorganisms ; 9(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918127

RESUMO

Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon.

8.
Microorganisms ; 9(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916227

RESUMO

Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among ≥5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% ≥5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in ≥5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≤26% across all ages) than pre-PCV (≥70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed.

9.
Microorganisms ; 9(4)2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801760

RESUMO

Streptococcus pneumoniae serotype 1 (ST1) was an important cause of invasive pneumococcal disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) containing ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project gathered ST1 IPD surveillance data from sites globally and aimed to estimate PCV10/13 impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-effects Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). Following PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After six years of PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04-0.06) for all ages, 0.05 (0.04-0.05) for <5 years of age, 0.08 (0.06-0.09) for 5-17 years, 0.06 (0.05-0.08) for 18-49 years, 0.06 (0.05-0.07) for 50-64 years, and 0.05 (0.04-0.06) for ≥65 years. PCV10/13 use in infant immunization programs was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 years. Limited data availability from the highest ST1 disease burden countries using a 3+0 schedule constrains generalizability and data from these settings are needed.

10.
Eur Child Adolesc Psychiatry ; 29(7): 1003-1010, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31595438

RESUMO

Non-clinical psychotic experiences (PEs) occur at over twice the rate of psychotic disorders along a continuum in the general population and increase risk for progression to diagnoseable disorders. Social isolation is a risk factor for psychotic disorders, although it is unclear if childhood social isolation increases risk for experience of non-clinical PEs later in life. Data come from the Gaz et Electricité (GAZEL) Youth Study (1991-1999) and the Trajectoires Épidémiologiques en Population (TEMPO) Study (2009-2011), a community-based prospective cohort study. Of 1,227 participants whose parents completed questionnaires (1999, participants aged 7-10 years) and who were followed-up (2011, participants aged 25-37 years), 333 had childhood social isolation and young adult PE data. Lifetime prevalence of PEs was 21%. Childhood social isolation was not associated with 0-1 PE in young adulthood (p = 0.74). However, childhood social isolation predicted the experience of ≥ 2 PEs in young adulthood, controlling for gender, age, and general health status (OR = 11.5, 95% CI = 2.5, 52.0, p = 0.002). Childhood social isolation predicts the risk of experiencing two or more lifetime PEs, which may increase the risk for subsequent progression to a diagnoseable psychotic disorder.


Assuntos
Transtornos Psicóticos/epidemiologia , Isolamento Social/psicologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Prevalência , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA