Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
J Biomol Struct Dyn ; 42(5): 2328-2340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37261844

RESUMO

Almost a billion people worldwide suffer from neurological disorders, which pose public health challenges. An important enzyme that is well-known for many neurodegenerative illnesses is monoamine oxidase (MAO). Although several promising drugs for the treatment of MAO inhibition have recently been examined, it is still necessary to identify the precise structural requirements for robust efficacy. Atom-based, field-based, and GA-MLR (genetic algorithm multiple linear regression) models were created for this investigation. All of the models have strong statistical (R2 and Q2) foundations because of both internal and external validation. Our dataset's molecule has a higher docking score than safinamide, a well-known and co-crystallized MAO-B inhibitor, as we also noticed. Using the SwissSimilarity platform, we further inquired which of our docked molecules would be the best for screening. We chose ZINC000016952895 as the screen molecule with the best binding docking score (XP score = -13.3613). Finally, the 100 ns for the ZINC000016952895-MAO-B complex in our MD investigations is stable. For compounds that we hit, also anticipate ADME properties. Our research revealed that the successful compound ZINC000016952895 might pave the way for the future development of MAO inhibitors for the treatment of neurological disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Isatina , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Relação Quantitativa Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Doenças Neurodegenerativas/tratamento farmacológico , Relação Estrutura-Atividade
3.
ACS Omega ; 8(47): 44437-44457, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046293

RESUMO

Click chemistry is a set of easy, atom-economical reactions that are often utilized to combine two desired chemical entities. Click chemistry accelerates lead identification and optimization, reduces the complexity of chemical synthesis, and delivers extremely high yields without undesirable byproducts. The most well-known click chemistry reaction is the 1,3-dipolar cycloaddition of azides and alkynes to form 1,2,3-triazoles. The resulting 1,2,3-triazoles can serve as both bioisosteres and linkers, leading to an increase in their use in the field of drug discovery. The current Review focuses on the use of click chemistry to identify new molecules for treating neurodegenerative diseases and in other areas such as peptide targeting and the quantification of biomolecules.

4.
RSC Adv ; 13(50): 35240-35250, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053684

RESUMO

Eighteen isatin-based benzyloxybenzaldehyde derivatives from three subseries, ISB, ISFB, and ISBB, were synthesized and their ability to inhibit monoamine oxidase (MAO) was evaluated. The inhibitory activity of all synthesized compounds was found to be more profound against MAO-B than MAO-A. Compound ISB1 most potently inhibited MAO-B with an IC50 of 0.124 ± 0.007 µM, ensued by ISFB1 (IC50 = 0.135 ± 0.002 µM). Compound ISFB1 most potently inhibited MAO-A with an IC50 of 0.678 ± 0.006 µM, ensued by ISBB3 (IC50 = 0.731 ± 0.028 µM), and had the highest selectivity index (SI) value (55.03). The three sub-parental compounds, ISB1, ISFB1, and ISBB1, had higher MAO-B inhibition than the other derivatives, indicating that the substitutions of the 5-H in the A-ring of isatin diminished the inhibition of MAO-A and MAO-B. Among these, ISB1 (para-benzyloxy group in the B-ring) displayed more significant MAO-B inhibition when compared to ISBB1 (meta-benzyloxy group in the B-ring). ISB1 and ISFB1 were identified to be competitive and reversible MAO-B inhibitors, having Ki values of 0.055 ± 0.010, and 0.069 ± 0.025 µM, respectively. Furthermore, in the parallel artificial membrane penetration assay, ISB1 and ISFB1 traversed the blood-brain barrier in the in vitro condition. Additionally, the current study found that ISB1 decreased rotenone-induced cell death in SH-SY5Y neuroblastoma cells. In docking and simulation studies, the hydrogen bonding formed by the imino nitrogen in ISB1 and the pi-pi stacking interaction of the phenyl ring in isatin significantly aided in the protein-ligand complex's stability, effectively inhibiting MAO-B. According to these observations, the MAO-B inhibitors ISB1 and ISFB1 were potent, selective, and reversible, making them conceivable therapies for neurological diseases.

5.
Expert Opin Ther Targets ; 27(12): 1257-1269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112471

RESUMO

INTRODUCTION: In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of naturally occurring chemicals. Chalcone exhibits extensive biological activity and has drawn attention in this context due to its function in the GABA receptor. Epilepsy and GABA receptors are related. It is a chronic neurological condition that affects globally. AREAS COVERED: Numerous neurological disorders, including anxiety and epilepsy, have been related to GABA, the brain's most prevalent inhibitory neurotransmitter. We go through the role of GABA receptors in anxiety and epilepsy in this review. The structure-activity relationship of chalcone and its derivatives on the GABA receptor is covered in our final section. EXPERT OPINION: GABA is a potential therapeutic target for issues associated with the nervous system. We talk about the potential effects of chalcone as a treatment for epilepsy and anxiety on the GABA receptor. Therefore, thorough research is necessary in this regard; the value of in silico tools in developing and enhancing GABA agonists is significant.


Assuntos
Chalcona , Chalconas , Epilepsia , Humanos , Receptores de GABA , Chalcona/química , Chalcona/farmacologia , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico , Receptores de GABA-A/fisiologia
6.
ACS Omega ; 8(41): 37731-37751, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867639

RESUMO

The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.

7.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765118

RESUMO

Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that catalyze the oxidative deamination of a wide range of endogenous and exogenous amines. Multiple neurological conditions, including Parkinson's disease (PD) and Alzheimer's disease (AD), are closely correlated with altered biogenic amine concentrations in the brain caused by MAO. Toxic byproducts of this oxidative breakdown, including hydrogen peroxide, reactive oxygen species, and ammonia, can cause oxidative damage and mitochondrial dysfunction in brain cells. Certain MAO-B blockers have been recognized as effective treatment options for managing neurological conditions, including AD and PD. There is still a pressing need to find potent therapeutic molecules to fight these disorders. However, the focus of neurodegeneration studies has recently increased, and certain compounds are now in clinical trials. Chromones are promising structures for developing therapeutic compounds, especially in neuronal degeneration. This review focuses on the MAO-B inhibitory potential of several synthesized chromones and their structural activity relationships. Concerning the discovery of a novel class of effective chromone-based selective MAO-B-inhibiting agents, this review offers readers a better understanding of the most recent additions to the literature.

8.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630420

RESUMO

Monoamine oxidase (MAO, EC 1.4.3.4) is responsible for the oxidative breakdown of both endogenous and exogenous amines and exists in MAO-A and MAO-B isomers. Eighteen indole-based phenylallylidene derivatives were synthesized via nucleophilic addition reactions comprising three sub-series, IHC, IHMC, and IHNC, and were developed and examined for their ability to inhibit MAO. Among them, compound IHC3 showed a strong MAO-B inhibitory effect with an IC50 (half-maximal inhibitory concentration) value of 1.672 µM, followed by IHC2 (IC50 = 16.934 µM). Additionally, IHC3 showed the highest selectivity index (SI) value of >23.92. The effectiveness of IHC3 was lower than the reference pargyline (0.14 µM); however, the SI value was higher than pargyline (17.16). Structurally, the IHC (-H in the B-ring) sub-series exhibited relatively stronger MAO-B inhibition than the others. In the IHC series, IHC3 (-F in the A-ring) exhibited stronger MAO-B suppression than the other substituted derivatives in the order -F > -Br > -Cl > -OCH3, -CH3, and -H at the 2-position in the A-ring. In the reversibility and enzyme kinetics experiments, IHC3 was a reversible inhibitor with a Ki value of 0.51 ± 0.15 µM for MAO-B. Further, it was observed that IHC3 greatly decreased the cell death caused by rotenone in SH-SY5Y neuroblastoma cells. A molecular docking study of the lead molecule was also performed to determine hypothetical interactions in the enzyme-binding cavity. These findings suggest that IHC3 is a strong, specific, and reversible MAO-B inhibitor that can be used to treat neurological diseases.


Assuntos
Antipsicóticos , Isatina , Neuroblastoma , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Micro-Ondas , Simulação de Acoplamento Molecular , Pargilina , Farmacóforo , Dopaminérgicos , Monoaminoxidase
9.
Arch Pharm (Weinheim) ; 356(7): e2300091, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37021551

RESUMO

As flavin adenine dinucleotide (FAD)-dependent enzymes, monoamine oxidases (MAOs) catalyze the oxidative deamination of various endogenous and exogenous amines. MAO-A inhibitors are thought to be effective therapeutic agents for treating neurological diseases including depression and anxiety. Due to the academic challenge of developing new human (h) MAO-A inhibitors and the potential for discovering substances with remarkable properties compared to existing MAO-A inhibitors, numerous research groups are looking into novel classes of chemical compounds that may function as selective hMAO-A inhibitors. ß-Carbolines are reported to be a prominent class of bioactive molecules exhibiting MAO-A inhibition. Chemically, ß-carboline is a tricyclic pyrido-3,4-indole ring. It has only recently been discovered that this chemotype has highly effective and specific MAO-A inhibitory activity. In this review, structure-activity relationship studies included in particular research publications from the 1960s to the present are discussed with regard to ß-carboline and its analogs. This comprehensive information helps to design and develop a new family of MAO-A inhibitors for the management of depressive disorders.


Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade , Monoaminoxidase/metabolismo , Carbolinas/farmacologia , Carbolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA