Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Cancer ; 5(3): 463-480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351181

RESUMO

Cancer stem cells (CSCs), functionally characterized by self-renewal and tumor-initiating activity, contribute to decreased tumor immunogenicity, while fostering tumor growth and metastasis. Targeting G9a histone methyltransferase (HMTase) effectively blocks CSC functions in colorectal tumors by altering pluripotent-like molecular networks; however, existing molecules directly targeting G9a HMTase activity failed to reach clinical stages due to safety concerns. Using a stem cell-based phenotypic drug-screening pipeline, we identified the dopamine transporter (DAT) antagonist vanoxerine, a compound with previously demonstrated clinical safety, as a cancer-specific downregulator of G9a expression. Here we show that gene silencing and chemical antagonism of DAT impede colorectal CSC functions by repressing G9a expression. Antagonizing DAT also enhanced tumor lymphocytic infiltration by activating endogenous transposable elements and type-I interferon response. Our study unveils the direct implication of the DAT-G9a axis in the maintenance of CSC populations and an approach to improve antitumor immune response in colon tumors.


Assuntos
Neoplasias do Colo , Histona-Lisina N-Metiltransferase , Piperazinas , Humanos , Histona-Lisina N-Metiltransferase/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
2.
Cancer Metastasis Rev ; 43(1): 441-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792222

RESUMO

Sam68 (Src associated in mitosis of 68 kDa) is an RNA-binding and multifunctional protein extensively characterized in numerous cellular functions, such as RNA processing, cell cycle regulation, kinase- and growth factor signaling. Recent investigations highlighted Sam68 as a primary target of a class of reverse-turn peptidomimetic drugs, initially developed as inhibitors of Wnt/ß-catenin mediated transcription. Further investigations on such compounds revealed their capacity to selectively eliminate cancer stem cell (CSC) activity upon engaging Sam68. This work highlighted previously unappreciated roles for Sam68 in the maintenance of neoplastic self-renewal and tumor-initiating functions. Here, we discuss the implication of Sam68 in tumorigenesis, where central findings support its contribution to chromatin regulation processes essential to CSCs. We also review advances in CSC-targeting drug discovery aiming to modulate Sam68 cellular distribution and protein-protein interactions. Ultimately, Sam68 constitutes a vulnerability point of CSCs and an attractive therapeutic target to impede neoplastic stemness in human tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894295

RESUMO

Colorectal tumors are heterogenous cellular systems harboring small populations of self-renewing and highly tumorigenic cancer stem cells (CSCs). Understanding the mechanisms fundamental to the emergence of CSCs and colorectal tumor initiation is crucial for developing effective therapeutic strategies. Two recent studies have highlighted the importance of developmental gene expression programs as potential therapeutic targets to suppress pro-oncogenic stem cell populations in the colonic epithelium. Specifically, a subset of aberrant stem cells was identified in preneoplastic intestinal lesions sharing significant transcriptional similarities with fetal gut development. In such aberrant stem cells, Sox9 was shown as a cornerstone for altered cell plasticity, the maintenance of premalignant stemness, and subsequent colorectal tumor initiation. Independently, chemical genomics was used to identify FDA-approved drugs capable of suppressing neoplastic self-renewal based on the ontogenetic root of a target tumor and transcriptional programs embedded in pluripotency. Here, we discuss the joint conclusions from these two approaches, underscoring the importance of developmental networks in CSCs as a novel paradigm for identifying therapeutics targeting colorectal cancer stemness.

4.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627147

RESUMO

The frequency of somatic retrotranspositions of Long Interspersed Nuclear Elements 1 (LINE1) over a lifetime in healthy colonic epithelium and colorectal tumors has recently been reported. Indicative of a cell type-specific effect, LINE1 sequences in colonic epithelium showed lower levels of DNA methylation compared to other cell types examined in the study. Consistent with a role for DNA methylation in transposon silencing, the decreases in DNA methylation observed at LINE1 elements in colonic epithelium were accompanied by increases in LINE1 mRNA levels. In human primary colorectal tumors, LINE1 retrotransposition frequency was tenfold higher than in normal colonic tissues, with insertions potentially altering genomic stability and cellular functions. Here, we discuss the discoveries made by Nam and colleagues, emphasizing the intestinal-specific methylation signature regulating the LINE1 lifecycle and how this new information could shape future drug discovery endeavors against colorectal cancer.

5.
Cell Chem Biol ; 30(7): 780-794.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379846

RESUMO

Overlapping principles of embryonic and tumor biology have been described, with recent multi-omics campaigns uncovering shared molecular profiles between human pluripotent stem cells (hPSCs) and adult tumors. Here, using a chemical genomic approach, we provide biological evidence that early germ layer fate decisions of hPSCs reveal targets of human cancers. Single-cell deconstruction of hPSCs-defined subsets that share transcriptional patterns with transformed adult tissues. Chemical screening using a unique germ layer specification assay for hPSCs identified drugs that enriched for compounds that selectively suppressed the growth of patient-derived tumors corresponding exclusively to their germ layer origin. Transcriptional response of hPSCs to germ layer inducing drugs could be used to identify targets capable of regulating hPSC specification as well as inhibiting adult tumors. Our study demonstrates properties of adult tumors converge with hPSCs drug induced differentiation in a germ layer specific manner, thereby expanding our understanding of cancer stemness and pluripotency.


Assuntos
Neoplasias , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Genômica
6.
STAR Protoc ; 3(1): 101218, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35265864

RESUMO

Organoids can enable the study of solid tumors initiated from a single cancer stem cell (CSC) ex vivo. We describe a serial tumor organoid plating protocol using primary colorectal cancer (CRC) tissues as a rapid and cost-efficient approach to evaluate the impact of therapeutic interventions on CSC functions. We detail the isolation of primary colorectal CSCs, organoid embedding, serial passaging, and CSC-related analytical techniques. For complete details on the use and execution of this protocol, please refer to Masibag et al. (2021) and Bergin et al. (2021).


Assuntos
Neoplasias Colorretais , Organoides , Neoplasias Colorretais/patologia , Humanos , Células-Tronco Neoplásicas/patologia
7.
iScience ; 24(12): 103442, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877499

RESUMO

Cancer stem cells (CSCs) are documented to play a key role in tumorigenesis and therapy resistance. Despite significant progress in clinical oncology, CSC reservoirs remain elusive and difficult to eliminate. Reverse-turn peptidomimetics were characterized as disruptors of CBP/beta-Catenin interactions and represent a promising avenue to curb hyperactive canonical Wnt/beta-Catenin signaling in CSCs. Recent studies suggested Sam68 as a critical mediator of reverse-turn peptidomimetics response in CSC populations. Using computational and biochemical approaches we confirmed Sam68 as a primary target of reverse-turn peptidomimetics. Furthermore, we executed an in silico drug discovery pipeline to identify yet uncharacterized reverse-turn peptidomimetic structures displaying superior anti-CSC activity in transformed pluripotent and colorectal cancer cell models. Thus, we identified YB-0158 as a reverse-turn peptidomimetic small molecule with enhanced translational potential, altering key hallmarks of human colorectal CSCs in patient-derived ex vivo organoids and in vivo serial tumor transplantation.

8.
Oncogenesis ; 10(11): 76, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34775469

RESUMO

The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a's catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.

9.
Cell Chem Biol ; 28(10): 1394-1406.e10, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33979648

RESUMO

Natural products (NPs) encompass a rich source of bioactive chemical entities. Here, we used human cancer stem cells (CSCs) in a chemical genomics campaign with NP chemical space to interrogate extracts from diverse strains of actinomycete for anti-cancer properties. We identified a compound (McM25044) capable of selectively inhibiting human CSC function versus normal stem cell counterparts. Biochemical and molecular studies revealed that McM025044 exerts inhibition on human CSCs through the small ubiquitin-like modifier (SUMO) cascade, found to be hyperactive in a variety of human cancers. McM025044 impedes the SUMOylation pathway via direct targeting of the SAE1/2 complex. Treatment of patient-derived CSCs resulted in reduced levels of SUMOylated proteins and suppression of progenitor and stem cell capacity measured in vitro and in vivo. Our study overcomes a barrier in chemically inhibiting oncogenic SUMOylation activity and uncovers a unique role for SAE2 in the biology of human cancers.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Autorrenovação Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sumoilação/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética
10.
Cell Rep Med ; 2(2): 100202, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33665638

RESUMO

The aberrant expression of dopamine receptors (DRDs) in acute myeloid leukemia (AML) cells has encouraged the repurposing of DRD antagonists such as thioridazine (TDZ) as anti-leukemic agents. Here, we access patient cells from a Phase I dose escalation trial to resolve the cellular and molecular bases of response to TDZ, and we extend these findings to an additional independent cohort of AML patient samples tested preclinically. We reveal that in DRD2+ AML patients, DRD signaling in leukemic progenitors provides leukemia-exclusive networks of sensitivity that spare healthy hematopoiesis. AML progenitor cell suppression can be increased by the isolation of the positive enantiomer from the racemic TDZ mixture (TDZ+), and this is accompanied by reduced cardiac liability. Our study indicates that the development of DRD-directed therapies provides a targeting strategy for a subset of AML patients and potentially other cancers that acquire DRD expression upon transformation from healthy tissue.


Assuntos
Hematopoese/fisiologia , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Receptores Dopaminérgicos/metabolismo , Tioridazina/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais/fisiologia
11.
Oncogene ; 40(6): 1191-1202, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323965

RESUMO

Colorectal tumors are hierarchically organized and governed by populations of self-renewing cancer stem cells, representing one of the deadliest types of cancers worldwide. Emergence of cancer stemness phenotype depends on epigenetic reprogramming, associated with profound transcriptional changes. As described for pluripotent reprogramming, epigenetic modifiers play a key role in cancer stem cells by establishing embryonic stem-like transcriptional programs, thus impacting the balance between self-renewal and differentiation. We identified overexpression of histone methyltransferase G9a as a risk factor for colorectal cancer, associated with shorter relapse-free survival. Moreover, using human transformed pluripotent cells as a surrogate model for cancer stem cells, we observed that G9a activity is essential for the maintenance of embryonic-like transcriptional signature promoting self-renewal, tumorigenicity, and undifferentiated state. Such a role was also applicable to colorectal cancer, where inhibitors of G9a histone methyltransferase function induced intestinal differentiation while restricting tumor-initiating activity in patient-derived colorectal tumor samples. Finally, by integrating transcriptome profiling with G9a/H3K9me2 loci co-occupancy, we identified the canonical Wnt pathway, epithelial-to-mesenchyme transition, and extracellular matrix organization as potential targets of such a chromatin regulation mechanism in colorectal cancer stem cells. Overall, our findings provide novel insights on the role of G9a as a driver of cancer stem cell phenotype, promoting self-renewal, tumorigenicity, and undifferentiated state.


Assuntos
Carcinógenos/metabolismo , Neoplasias Colorretais/genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Células-Tronco Neoplásicas/metabolismo , Autorrenovação Celular/genética , Reprogramação Celular/genética , Neoplasias Colorretais/patologia , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Intervalo Livre de Progressão , Transcriptoma/genética
12.
Nat Neurosci ; 23(9): 1090-1101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661394

RESUMO

While the neuronal underpinnings of autism spectrum disorder (ASD) are being unraveled, vascular contributions to ASD remain elusive. Here, we investigated postnatal cerebrovascular development in the 16p11.2df/+ mouse model of 16p11.2 deletion ASD syndrome. We discover that 16p11.2 hemizygosity leads to male-specific, endothelium-dependent structural and functional neurovascular abnormalities. In 16p11.2df/+ mice, endothelial dysfunction results in impaired cerebral angiogenesis at postnatal day 14, and in altered neurovascular coupling and cerebrovascular reactivity at postnatal day 50. Moreover, we show that there is defective angiogenesis in primary 16p11.2df/+ mouse brain endothelial cells and in induced-pluripotent-stem-cell-derived endothelial cells from human carriers of the 16p11.2 deletion. Finally, we find that mice with an endothelium-specific 16p11.2 deletion (16p11.2ΔEC) partially recapitulate some of the behavioral changes seen in 16p11.2 syndrome, specifically hyperactivity and impaired motor learning. By showing that developmental 16p11.2 haploinsufficiency from endothelial cells results in neurovascular and behavioral changes in adults, our results point to a potential role for endothelial impairment in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Células Endoteliais/patologia , Acoplamento Neurovascular/fisiologia , Animais , Transtorno Autístico , Circulação Cerebrovascular/fisiologia , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Deficiência Intelectual , Masculino , Camundongos , Neovascularização Fisiológica/genética
13.
Genes (Basel) ; 11(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708659

RESUMO

In a recent publication, Ansari et al. identified gut microbiota as a critical mediator of the intestinal inflammatory response through epigenetic programming of host intestinal epithelium. Exposure to the microbiota induces Ten-Eleven-Translocation (TET)-dependent hypomethylation of genomic elements regulating genes associated with inflammatory response and colorectal cancer. Here, we discuss the impact of such a discovery on the understanding of how the intestinal microbiota may contribute to epigenetic reprogramming and influence the onset of colorectal tumorigenesis. Finally, we examine the prospect of TET inhibition strategies as a therapeutic and/or preventive approach for colorectal cancer in patients afflicted by inflammatory bowel disease.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Neoplasias Colorretais/genética , Metilação de DNA , Epigenoma , Homeostase , Humanos , Inflamação
14.
Genes (Basel) ; 11(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512705

RESUMO

Recently, Kato et al. reported recurrent activating mutations in the SET domain of histone methyltransferase G9a, driving an oncogenic cascade in melanoma. The authors also reported correlations between G9a expression and the regulation of the canonical WNT pathway. Although we could not observe such mutations in human colorectal adenocarcinoma, newly reported findings are of high relevance to colorectal cancer, as WNT target gene signatures were closely associated with G9a expression. Here, we put into perspective such new results on G9a expression in colorectal cancers and the potential relationship with tumor heterogeneity and acquisition of neoplastic stemness.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Heterogeneidade Genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Domínios PR-SET/genética , Proteínas Wnt/genética
15.
BMC Mol Cell Biol ; 21(1): 14, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183701

RESUMO

BACKGROUND: Fibronectin (FN) assembly into an insoluble fibrillar matrix is a crucial step in many cell responses to extracellular matrix (ECM) properties, especially with regards to the integrin-related mechanosensitive signaling pathway. We have previously reported that the silencing of expression of integrin-linked kinase (ILK) in human intestinal epithelial crypt (HIEC) cells causes significant reductions in proliferation and spreading through concomitantly acquired impairment of soluble FN deposition. These defects in ILK-depleted cells are rescued by growth on exogenous FN. In the present study we investigated the contribution of ILK in the fibrillogenesis of FN and its relation to integrin-actin axis signaling and organization. RESULTS: We show that de novo fibrillogenesis of endogenous soluble FN is ILK-dependent. This function seemingly induces the assembly of an ECM that supports increased cytoskeletal tension and the development of a fully spread contractile cell phenotype. We observed that HIEC cell adhesion to exogenous FN or collagen-I (Col-I) is sufficient to restore fibrillogenesis of endogenous FN in ILK-depleted cells. We also found that optimal engagement of the Ras homolog gene family member A (RhoA) GTPase/Rho-associated kinase (ROCK-1, ROCK-2)/myosin light chain (MLC) pathway, actin ventral stress fiber formation, and integrin adhesion complex (IAC) maturation rely primarily upon the cell's capacity to execute FN fibrillogenesis, independent of any significant ILK input. Lastly, we confirm the integrin α5ß1 as the main integrin responsible for FN assembly, although in ILK-depleted cells αV-class integrins expression is needed to allow the rescue of FN fibrillogenesis on exogenous substrate. CONCLUSION: Our study demonstrates that ILK specifically induces the initiation of FN fibrillogenesis during cell spreading, which promotes RhoA/ROCK-dependent cell contractility and maturation of the integrin-actin axis structures. However, the fibrillogenesis process and its downstream effect on RhoA signaling, cell contractility and spreading are ILK-independent in human intestinal epithelial crypt cells.


Assuntos
Fibronectinas/metabolismo , Proteínas Serina-Treonina Quinases , Actinas/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Inativação Gênica , Humanos , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Cell ; 177(4): 910-924.e22, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982595

RESUMO

The assembly of organized colonies is the earliest manifestation in the derivation or induction of pluripotency in vitro. However, the necessity and origin of this assemblance is unknown. Here, we identify human pluripotent founder cells (hPFCs) that initiate, as well as preserve and establish, pluripotent stem cell (PSC) cultures. PFCs are marked by N-cadherin expression (NCAD+) and reside exclusively at the colony boundary of primate PSCs. As demonstrated by functional analysis, hPFCs harbor the clonogenic capacity of PSC cultures and emerge prior to commitment events or phenotypes associated with pluripotent reprogramming. Comparative single-cell analysis with pre- and post-implantation primate embryos revealed hPFCs share hallmark properties with primitive endoderm (PrE) and can be regulated by non-canonical Wnt signaling. Uniquely informed by primate embryo organization in vivo, our study defines a subset of founder cells critical to the establishment pluripotent state.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Análise de Célula Única , Via de Sinalização Wnt
17.
Methods Mol Biol ; 1765: 333-347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29589319

RESUMO

Multiple studies focused on tumor heterogeneity and cellular hierarchies have demonstrated the role of cancer stem cells (CSC) in tumor initiation and recurrence. Colorectal cancer is one of the leading causes of cancer-related death and is hierarchically organized, with the majority of tumor cells descending from a small population of colon cancer stem cells (CCSCs). Such a rare self-renewing population is marked by the acquisition of distinct chromatin regulation and transcriptional programs. Fundamental molecular deviations between CCSCs and bulk tumor cells as well as normal tissues represent a unique therapeutic access to develop novel, selective anticancer therapies.In this chapter, we describe a methodological pipeline to identify novel molecules to selectively target human CCSC. We present a point-by-point description of a typical phenotypic molecular screening experiment, aiming to identify selective modulators of human CCSCs vs. normal intestinal progenitor cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Colo/patologia , Neoplasias Colorretais/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Linhagem Celular Tumoral , Colo/citologia , Neoplasias Colorretais/patologia , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos
18.
Nat Cell Biol ; 19(11): 1336-1347, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035359

RESUMO

Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both in vitro co-culture platforms and in vivo xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation. In vivo administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.


Assuntos
Adipócitos/patologia , Medula Óssea/patologia , Eritropoese/fisiologia , Leucemia Mieloide Aguda/patologia , Adipogenia/fisiologia , Adulto , Idoso , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Técnicas de Cocultura/métodos , Feminino , Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , PPAR gama/metabolismo , Células-Tronco/patologia , Adulto Jovem
19.
Cell Chem Biol ; 24(7): 833-844.e9, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28648376

RESUMO

Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/ß-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/ß-catenin signaling within CSCs. Disruption of CBP-ß-catenin interaction via ICG-001/CWP induces the formation of a Sam68-CBP complex in CSCs that alters Wnt signaling toward apoptosis and differentiation induction. Our study identifies Sam68 as a regulator of human CSC vulnerability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sialoglicoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Compostos Azabicíclicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/transplante , Organofosfatos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinonas/farmacologia , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Sialoglicoproteínas/antagonistas & inibidores , Sialoglicoproteínas/genética , Sumoilação/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
20.
Cell Rep ; 19(1): 20-35, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380358

RESUMO

Human pluripotent stem cells (hPSCs) have been reported in naive and primed states. However, the ability to generate mature cell types remains the imperative property for utility of hPSCs. Here, we reveal that the naive state enhances self-renewal while restricting lineage differentiation in vitro to neural default fate. Molecular analyses indicate expression of multiple lineage-associated transcripts in naive hPSCs that failed to predict biased functional differentiation capacity. Naive hPSCs can be converted to primed state over long-term serial passage that permits recovery of multi-germ layer differentiation. Suppression of OCT4 but not NANOG allows immediate recovery directly from naive state. To this end, we identified chemical inhibitors of OCT4 that restore naive hPSC differentiation. Our study reveals unique cell-fate restrictions in human pluripotent states and provides an approach to overcome these barriers that harness both efficient naive hPSC growth while maintaining in vitro differentiation essential for hPSC applications.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Reprogramação Celular/genética , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Proteína Homeobox Nanog/metabolismo , Nistatina/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA/genética , Teratoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA