Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Biol Chem ; 287(6): 4053-65, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22130665

RESUMO

In this study, we have investigated the role of a glioma-specific cation channel assembled from subunits of the Deg/epithelial sodium channel (ENaC) superfamily, in the regulation of migration and cell cycle progression in glioma cells. Channel inhibition by psalmotoxin-1 (PcTX-1) significantly inhibited migration and proliferation of D54-MG glioma cells. Both PcTX-1 and benzamil, an amiloride analog, caused cell cycle arrest of D54-MG cells in G(0)/G(1) phases (by 30 and 40%, respectively) and reduced cell accumulation in S and G(2)/M phases after 24 h of incubation. Both PcTX-1 and benzamil up-regulated expression of cyclin-dependent kinase inhibitor proteins p21(Cip1) and p27(Kip1). Similar results were obtained in U87MG and primary glioblastoma multiforme cells maintained in primary culture and following knockdown of one of the component subunits, ASIC1. In contrast, knocking down δENaC, which is not a component of the glioma cation channel complex, had no effect on cyclin-dependent kinase inhibitor expression. Phosphorylation of ERK1/2 was also inhibited by PcTX-1, benzamil, and knockdown of ASIC1 but not δENaC in D54MG cells. Our data suggest that a specific cation conductance composed of acid-sensing ion channels and ENaC subunits regulates migration and cell cycle progression in gliomas.


Assuntos
Pontos de Checagem do Ciclo Celular , Movimento Celular , Bloqueadores do Canal de Sódio Epitelial , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Amilorida/análogos & derivados , Amilorida/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fase G1/efeitos dos fármacos , Fase G1/genética , Glioma/genética , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Peptídeos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Canais de Sódio/genética , Venenos de Aranha/farmacologia
2.
Methods Mol Biol ; 742: 35-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547725

RESUMO

Cystic fibrosis (CF) is a lethal genetic disorder, characterized by both clinical and genetic complexities, and arises as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The gene encodes a Cl(-) channel belonging to the ABC (ATP Binding Cassette) superfamily of transporters. The members of this superfamily use ATP hydrolysis to fulfill their function as active transporters. So far, CFTR is the only member of this family to function as a cAMP-activated Cl(-) channel. Intense research following the cloning of the CFTR gene has extended the role of the CFTR beyond that of a Cl(-) channel. One of the best recognized, yet still controversial, functions of the CFTR is its ability to modulate the functioning of other transporters. The modulation of epithelial Na(+) channel (ENaC) function serves as a prime example of regulatory function of the CFTR. In this chapter, we will briefly describe an integrated protocol consisting of biochemical and electrophysiological approaches to study the regulation of ENaC by CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Vesículas Citoplasmáticas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Bicamadas Lipídicas/metabolismo , Oócitos/metabolismo , Transdução de Sinais , Animais , Western Blotting , Técnicas de Cultura de Células , Cloretos/metabolismo , AMP Cíclico/metabolismo , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vesículas Citoplasmáticas/genética , Eletroforese em Gel de Poliacrilamida , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Feminino , Humanos , Imunoprecipitação , Transporte de Íons , Mutação , Oócitos/citologia , Técnicas de Patch-Clamp , RNA Complementar/análise , RNA Complementar/biossíntese , Transfecção , Xenopus laevis
3.
Am J Physiol Cell Physiol ; 300(6): C1246-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21346156

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive of the primary brain tumors. These tumors express multiple members of the epithelial sodium channel (ENaC)/degenerin (Deg) family and are associated with a basally active amiloride-sensitive cation current. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test the hypothesis that ASIC1 interacts with αENaC and γENaC at the cellular level, we have used total internal reflection fluorescence microscopy (TIRFM) in live rat astrocytes transiently cotransfected with cDNAs for ASIC1-DsRed plus αENaC-yellow fluorescent protein (YFP) or ASIC1-DsRed plus γENaC-YFP. TIRFM images show colocalization of ASIC1 with both αENaC and γENaC. Furthermore, using TIRFM in stably transfected D54-MG cells, we also found that ASIC1 and αENaC both localize to a submembrane region following exposure to pH 6.0, similar to the acidic conditions found in the core of a glioblastoma lesion. Using high-resolution clear native gel electrophoresis, we found that ASIC1 forms a complex with ENaC subunits which migrates at ≈480 kDa in D54-MG glioma cells. These data suggest that different ENaC/Deg subunits interact and could combine to form a hybrid channel that likely underlies the amiloride-sensitive current seen in human glioma cells.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Glioma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/citologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Canais Epiteliais de Sódio/genética , Glioma/patologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Sódio/genética
4.
Sci Eng Ethics ; 16(4): 669-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20730569

RESUMO

Modifying images for scientific publication is now quick and easy due to changes in technology. This has created a need for new image processing guidelines and attitudes, such as those offered to the research community by Doug Cromey (Cromey 2010). We suggest that related changes in technology have simplified the task of detecting misconduct for journal editors as well as researchers, and that this simplification has caused a shift in the responsibility for reporting misconduct. We also argue that the concept of best practices in image processing can serve as a general model for education in best practices in research.


Assuntos
Ética em Pesquisa , Processamento de Imagem Assistida por Computador/ética , Fotografação/ética , Ciência/ética , Códigos de Ética , Guias como Assunto
5.
J Biol Chem ; 285(35): 27130-27143, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20601429

RESUMO

Acid-sensing ion channel 1 (ASIC1) is a H(+)-gated channel of the amiloride-sensitive epithelial Na(+) channel (ENaC)/degenerin family. ASIC1 is expressed mostly in the central and peripheral nervous system neurons. ENaC and ASIC function is regulated by several serine proteases. The type II transmembrane serine protease matriptase activates the prototypical alphabetagammaENaC channel, but we found that matriptase is expressed in glioma cells and its expression is higher in glioma compared with normal astrocytes. Therefore, the goal of this study was to test the hypothesis that matriptase regulates ASIC1 function. Matriptase decreased the acid-activated ASIC1 current as measured by two-electrode voltage clamp in Xenopus oocytes and cleaved ASIC1 expressed in oocytes or CHO K1 cells. Inactive S805A matriptase had no effect on either the current or the cleavage of ASIC1. The effect of matriptase on ASIC1 was specific, because it did not affect the function of ASIC2 and no matriptase-specific ASIC2 fragments were detected in oocytes or in CHO cells. Three matriptase recognition sites were identified in ASIC1 (Arg-145, Lys-185, and Lys-384). Site-directed mutagenesis of these sites prevented matriptase cleavage of ASIC1. Our results show that matriptase is expressed in glioma cells and that matriptase specifically cleaves ASIC1 in heterologous expression systems.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Serina Endopeptidases/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Oócitos , Serina Endopeptidases/genética , Canais de Sódio/genética , Xenopus
7.
J Biol Chem ; 285(13): 9627-9635, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20048170

RESUMO

Amiloride is a small molecule diuretic, which has been used to dissect sodium transport pathways in many different systems. This drug is known to interact with the epithelial sodium channel and acid-sensing ion channel proteins, as well as sodium/hydrogen antiporters and sodium/calcium exchangers. The exact structural basis for these interactions has not been elucidated as crystal structures of these proteins have been challenging to obtain, though some involved residues and domains have been mapped. This work examines the interaction of amiloride with acid-sensing ion channel-1, a protein whose structure is available using computational and experimental techniques. Using molecular docking software, amiloride and related molecules were docked to model structures of homomeric human ASIC-1 to generate potential interaction sites and predict which analogs would be more or less potent than amiloride. The predictions made were experimentally tested using whole-cell patch clamp. Drugs previously classified as NCX or NHE inhibitors are shown to also inhibit hASIC-1. Potential docking sites were re-examined against experimental data to remove spurious interaction sites. The voltage sensitivity of inhibitors was also examined. Using the aggregated data from these computational and experimental experiments, putative interaction sites for amiloride and hASIC-1 have been defined. Future work will experimentally verify these interaction sites, but at present this should allow for virtual screening of drug libraries at these putative interaction sites.


Assuntos
Amilorida/farmacologia , Proteínas do Tecido Nervoso/química , Canais de Sódio/química , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Células CHO , Galinhas , Cricetinae , Cricetulus , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
8.
FASEB J ; 23(11): 3743-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19620404

RESUMO

Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) protein. The DeltaF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of endogenous DeltaF508-CFTR in vivo. cDNA encoding CFTR fragments were delivered to human airway epithelial cells and mice harboring endogenous DeltaF508-CFTR. Delivery of small CFTR fragments, which do not act as chloride channels by themselves, rescue DeltaF508-CFTR. Therefore, we can speculate that the presence of the CFTR fragment, which does not harbor a mutation, might facilitate intermolecular interactions. The rescue of CFTR was evident by the restoration of chloride transport in human CFBE41o- bronchial epithelial cells expressing DeltaF508-CFTR in vitro. More important, nasal administration of an adenovirus expressing a complementary CFTR fragment restored some degree of CFTR activity in the nasal airways of DeltaF508 homozygous mice in vivo. These findings identify complementary protein fragments as a viable in vivo approach for correcting disease-causing misfolding of plasma membrane proteins.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transporte de Íons/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Células Cultivadas , Fibrose Cística/genética , Células Epiteliais/metabolismo , Humanos , Transporte de Íons/genética , Camundongos
9.
J Biol Chem ; 284(36): 24526-41, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19561078

RESUMO

High grade gliomas such as glioblastoma multiforme express multiple members of the epithelial sodium channel (ENaC)/Degenerin family, characteristically displaying a basally active amiloride-sensitive cation current not seen in normal human astrocytes or lower grade gliomas. Using quantitative real time PCR, we have shown higher expression of ASIC1, alphaENaC, and gammaENaC in D54-MG human glioblastoma multiforme cells compared with primary human astrocytes. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test this hypothesis we made dominant negative cDNAs for ASIC1, alphaENaC, gammaENaC, and deltaENaC. D54-MG cells transfected with the dominant negative constructs for ASIC1, alphaENaC, or gammaENaC showed reduced protein expression and a significant reduction in the amiloride-sensitive whole cell current as compared with untransfected D54-MG cells. Knocking down alphaENaC or gammaENaC also abolished the high P(K)(+)/P(Na)(+) of D54-MG cells. Knocking down deltaENaC in D54-MG cells reduced deltaENaC protein expression but had no effect on either the whole cell current or K(+) permeability. Using co-immunoprecipitation we show interactions between ASIC1, alphaENaC, and gammaENaC, consistent with these subunits interacting with each other to form an ion channel in glioma cells. We also found a significant inhibition of D54-MG cell migration after ASIC1, alphaENaC, or gammaENaC knockdown, consistent with the hypothesis that ENaC/Degenerin subunits play an important role in glioma cell biology.


Assuntos
Movimento Celular , Canais Epiteliais de Sódio/metabolismo , Glioblastoma/mortalidade , Potenciais da Membrana , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Astrócitos/metabolismo , Células CHO , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Sódio/genética
10.
J Biol Chem ; 284(26): 17625-33, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19395383

RESUMO

Acid-sensing ion channel-1 (ASIC-1) is a proton-gated ion channel implicated in nociception and neuronal death during ischemia. Recently the first crystal structure of a chicken ASIC was obtained. Expanding upon this work, homology models of the human ASICs were constructed and evaluated. Energy-minimized structures were tested for validity by in silico docking of the models to psalmotoxin-1, which potently inhibits ASIC-1 and not other members of the family. The data are consistent with prior radioligand binding and functional assays while also explaining the selectivity of PcTX-1 for homomeric hASIC-1a. Binding energy calculations suggest that the toxin and channel create a complex that is more stable than the channel alone. The binding is dominated by the coulombic contributions, which account for why the toxin-channel interaction is not observed at low pH. The computational data were experimentally verified with single channel and whole-cell electrophysiological studies. These validated models should allow for the rational design of specific and potent peptidomimetic compounds that may be useful for the treatment of pain or ischemic stroke.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/química , Venenos de Aranha/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Eletrofisiologia , Humanos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Peptídeos , Conformação Proteica , Canais de Sódio/genética , Canais de Sódio/metabolismo
12.
Mol Biosyst ; 5(2): 123-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19156256

RESUMO

Cystic fibrosis (CF) is one of the most common lethal genetic disorders. It results primarily from mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene. These mutations cause inadequate functioning of CFTR, which in turn leads to the severe disruption of transport function in several epithelia across various organs. Affected organs include the sweat glands, the intestine, and the reproductive system, with the most devastating consequences due to the effects of the disease on airways. Despite aggressive treatment, gradual lung failure is the major life limiting factor in patients with CF. Understanding of the exact manner by which defects in the CFTR lead to lung failure is thus critical. In the CF airway, decreased chloride secretion and increased salt absorption is observed. The decreased chloride secretion appears to be a direct consequence of defective CFTR; however, the increased salt absorption is believed to result from the failure of CFTR to restrict salt absorption through a sodium channel named the epithelial Na(+) channel, ENaC. The mechanism by which CFTR modulates the function of ENaC proteins is still obscure and somewhat controversial. In this short review we will focus on recent findings of a possible direct CFTR and ENaC association.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Canais Epiteliais de Sódio/metabolismo , Animais , Proteínas de Bactérias/química , Transporte Biológico , Galinhas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletrofisiologia/métodos , Humanos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Modelos Genéticos , Modelos Moleculares , Conformação Molecular , Mutação , Sais/química
13.
Am J Physiol Cell Physiol ; 296(2): C372-84, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19091960

RESUMO

Human acid-sensing ion channel 1b (hASIC1b) is a H(+)-gated amiloride-sensitive cation channel. We have previously shown that glioma cells exhibit an amiloride-sensitive cation conductance. Amiloride and the ASIC1 blocker psalmotoxin-1 decrease the migration and proliferation of glioma cells. PKC also abolishes the amiloride-sensitive conductance of glioma cells and inhibits hASIC1b open probability in planar lipid bilayers. In addition, hASIC1b's COOH terminus has been shown to interact with protein interacting with C kinase (PICK)1, which targets PKC to the plasma membrane. Therefore, we tested the hypothesis that PKC regulation of hASIC1b at specific PKC consensus sites inhibits hASIC1b function. We mutated three consensus PKC phosphorylation sites (T26, S40, and S499) in hASIC1b to alanine, to prevent phosphorylation, and to glutamic acid or aspartic acid, to mimic phosphorylation. Our data suggest that S40 and S499 are critical sites mediating the modulation of hASIC1b by PKC. We expressed mutant hASIC1b constructs in Xenopus oocytes and measured acid-activated currents by two-electrode voltage clamp. T26A and T26E did not exhibit acid-activated currents. S40A was indistinguishable from wild type (WT), whereas S40E, S499A, and S499D currents were decreased. The PKC activators PMA and phorbol 12,13-dibutyrate inhibited WT hASIC1b and S499A, and PMA had no effect on S40A or on WT hASIC1b in oocytes pretreated with the PKC inhibitor chelerythrine. Chelerythrine inhibited WT hASIC1b and S40A but had no effect on S499A or S40A/S499A. PKC activators or the inhibitor did not affect the surface expression of WT hASIC1b. These data show that the two PKC consensus sites S40 and S499 differentially regulate hASIC1b and mediate the effects of PKC activation or PKC inhibition on hASIC1b. This will result in a deeper understanding of PKC regulation of this channel in glioma cells, information that may help in designing potentially beneficial therapies in their treatment.


Assuntos
Sequência Consenso , Ativação do Canal Iônico , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Benzofenantridinas/farmacologia , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Humanos , Cinética , Potenciais da Membrana , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Oócitos , Dibutirato de 12,13-Forbol/farmacologia , Fosforilação , Conformação Proteica , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Canais de Sódio/química , Canais de Sódio/genética , Relação Estrutura-Atividade , Acetato de Tetradecanoilforbol/farmacologia , Xenopus laevis
14.
PLoS One ; 3(11): e3655, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18985161

RESUMO

Mitochondria dysfunction and hypoxic microenvironment are hallmarks of cancer cell biology. Recently, many studies have focused on isolation of brain cancer stem cells using CD133 expression. In this study, we investigated whether CD133 expression is regulated by bioenergetic stresses affecting mitochondrial functions in human glioma cells. First, we determined that hypoxia induced a reversible up-regulation of CD133 expression. Second, mitochondrial dysfunction through pharmacological inhibition of the Electron Transport Chain (ETC) produced an up-regulation of CD133 expression that was inversely correlated with changes in mitochondrial membrane potential. Third, generation of stable glioma cells depleted of mitochondrial DNA showed significant and stable increases in CD133 expression. These glioma cells, termed rho(0) or rho(0), are characterized by an exaggerated, uncoupled glycolytic phenotype and by constitutive and stable up-regulation of CD133 through many cell passages. Moreover, these rho(0) cells display the ability to form "tumor spheroids" in serumless medium and are positive for CD133 and the neural progenitor cell marker, nestin. Under differentiating conditions, rho(0) cells expressed multi-lineage properties. Reversibility of CD133 expression was demonstrated by transfering parental mitochondria to rho(0) cells resulting in stable trans-mitochondrial "cybrid" clones. This study provides a novel mechanistic insight about the regulation of CD133 by environmental conditions (hypoxia) and mitochondrial dysfunction (genetic and chemical). Considering these new findings, the concept that CD133 is a marker of brain tumor stem cells may need to be revised.


Assuntos
Antígenos CD/fisiologia , Biomarcadores Tumorais/fisiologia , Neoplasias Encefálicas/genética , Metabolismo Energético/genética , Glioma/genética , Glicoproteínas/fisiologia , Peptídeos/fisiologia , Estresse Fisiológico/genética , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Hipóxia Celular/genética , DNA Mitocondrial/fisiologia , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Rotenona/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Células Tumorais Cultivadas , Desacopladores/farmacologia
17.
J Biol Chem ; 282(50): 36481-8, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17913705

RESUMO

We present the evidence for a direct physical association of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), two major ion channels implicated in the pathophysiology of cystic fibrosis, a devastating inherited disease. We employed fluorescence resonance energy transfer, a distance-dependent imaging technique with capability to detect molecular complexes with near angstrom resolution, to estimate the proximity of CFTR and ENaC, an essential variable for possible physical interaction to occur. Fluorescence resonance energy transfer studies were complemented with a classic biochemical approach: coimmunoprecipitation. Our results place CFTR and ENaC within reach of each other, suggestive of a direct interaction between these two proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Linhagem Celular , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica/genética
18.
J Biol Chem ; 282(47): 34381-91, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17878160

RESUMO

High-grade glioma cells express subunits of the ENaC/Deg superfamily, including members of ASIC subfamily. Our previous work has shown that glioma cells exhibit a basally active cation current, which is not present in low-grade tumor cells or normal astrocytes, and that can be blocked by amiloride. When ASIC2 is present within the channel complex in the plasma membrane, the channel is rendered non-functional because of inherent negative effectors that require ASIC2. We have previously shown that high-grade glioma cells functionally express this current because of the lack of ASIC2 in the plasma membrane. We now hypothesize that ASIC2 trafficking in glioma cells is regulated by a specific chaperone protein, namely Hsc70. Our results demonstrated that Hsc70 co-immunoprecipitates with ASIC2 and that it is overexpressed in glioma cells as compared with normal astrocytes. In contrast, there was no difference in the expression of calnexin, which also co-immunoprecipitates with ASIC2. In addition, glycerol and sodium 4-phenylbutyrate reduced the amount of Hsc70 expressed in glioma cells to levels found in normal astrocytes. Transfection of Hsc70 siRNA inhibited the constitutively activated amiloride-sensitive current, decreased migration, and increased ASIC2 surface expression in glioma cells. These results support an association between Hsc70 and ASIC2 that may underlie the increased retention of ASIC2 in the endoplasmic reticulum of glioma cells. The data also suggest that decreasing Hsc70 expression promotes reversion of a high-grade glioma cell to a more normal astrocytic phenotype.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Canais de Sódio/biossíntese , Canais Iônicos Sensíveis a Ácido , Astrócitos/metabolismo , Calnexina/biossíntese , Calnexina/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Proteínas de Choque Térmico HSC70/antagonistas & inibidores , Proteínas de Choque Térmico HSC70/genética , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Canais de Sódio/genética , Transfecção
19.
J Biol Chem ; 282(35): 25548-59, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17613525

RESUMO

Amiloride-sensitive ion channels are formed from homo- or heteromeric combinations of subunits from the epithelial Na+ channel (ENaC)/degenerin superfamily, which also includes the acid-sensitive ion channel (ASIC) family. These channel subunits share sequence homology and topology. In this study, we have demonstrated, using confocal fluorescence resonance energy transfer microscopy and co-immunoprecipitation, that ASIC and ENaC subunits are capable of forming cross-clade intermolecular interactions. We have also shown that combinations of ASIC1 with ENaC subunits exhibit novel electrophysiological characteristics compared with ASIC1 alone. The results of this study suggest that heteromeric complexes of ASIC and ENaC subunits may underlie the diversity of amiloride-sensitive cation conductances observed in a wide variety of tissues and cell types where co-expression of ASIC and ENaC subunits has been observed.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Subunidades Proteicas/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Células CHO , Cátions/metabolismo , Cricetinae , Cricetulus , Canais Epiteliais de Sódio/genética , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos/fisiologia , Subunidades Proteicas/genética , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética
20.
Am J Physiol Cell Physiol ; 293(3): C1181-5, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17615161

RESUMO

Despite intensive research, brain tumors remain among the most difficult type of malignancies to treat, due largely to their diffusely invasive nature and the associated difficulty of adequate surgical resection. To migrate through the brain parenchyma and to proliferate, glioma cells must be capable of significant changes in shape and volume. We have previously reported that glioma cells express an amiloride- and psalmotoxin-sensitive cation conductance that is not found in normal human astrocytes. In the present study, we investigated the potential role of this ion channel to mediate regulatory volume increase in glioma cells. We found that the ability of the cells to volume regulate subsequent to cell shrinkage by hyperosmolar solutions was abolished by both amiloride and psalmotoxin 1. This toxin is thought to be a specific peptide inhibitor of acid-sensing ion channel (ASIC1), a member of the Deg/ENaC superfamily of cation channels. We have previously shown this toxin to be an effective blocker of the glioma cation conductance. Our data suggest that one potential role for this conductance may be to restore cell volume during the cell's progression thorough the cell cycle and while the tumor cell migrates within the interstices of the brain.


Assuntos
Amilorida/farmacologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Pressão Osmótica , Peptídeos , Sódio/metabolismo , Venenos de Aranha/farmacologia , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA