Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Syst Neurosci ; 13: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798421

RESUMO

Understanding the origin of the main physiological processes involved in consciousness is a major challenge of contemporary neuroscience, with crucial implications for the study of Disorders of Consciousness (DOC). The difficulties in achieving this task include the considerable quantity of experimental data in this field, along with the non-intuitive, nonlinear nature of neuronal dynamics. One possibility of integrating the main results from the experimental literature into a cohesive framework, while accounting for nonlinear brain dynamics, is the use of physiologically-inspired computational models. In this study, we present a physiologically-grounded computational model, attempting to account for the main micro-circuits identified in the human cortex, while including the specificities of each neuronal type. More specifically, the model accounts for thalamo-cortical (vertical) regulation of cortico-cortical (horizontal) connectivity, which is a central mechanism for brain information integration and processing. The distinct neuronal assemblies communicate through feedforward and feedback excitatory and inhibitory synaptic connections implemented in a template brain accounting for long-range connectome. The EEG generated by this physiologically-based simulated brain is validated through comparison with brain rhythms recorded in humans in two states of consciousness (wakefulness, sleep). Using the model, it is possible to reproduce the local disynaptic disinhibition of basket cells (fast GABAergic inhibition) and glutamatergic pyramidal neurons through long-range activation of vasoactive intestinal-peptide (VIP) interneurons that induced inhibition of somatostatin positive (SST) interneurons. The model (COALIA) predicts that the strength and dynamics of the thalamic output on the cortex control the local and long-range cortical processing of information. Furthermore, the model reproduces and explains clinical results regarding the complexity of transcranial magnetic stimulation TMS-evoked EEG responses in DOC patients and healthy volunteers, through a modulation of thalamo-cortical connectivity that governs the level of cortico-cortical communication. This new model provides a quantitative framework to accelerate the study of the physiological mechanisms involved in the emergence, maintenance and disruption (sleep, anesthesia, DOC) of consciousness.

2.
Front Syst Neurosci ; 13: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191264

RESUMO

In this work, we aim to investigate whether information based metrics of neural activity are a useful tool for the quantification of consciousness before and shortly after birth. Neural activity is measured using fetal magnetoencephalography (fMEG) in human fetuses and neonates. Based on recent theories on consciousness, information-based metrics are established to measure brain complexity and to assess different levels of consciousness. Different metrics (measures of entropy, compressibility and fractality) are, thus, explored in a reference population and their usability is evaluated. For comparative analysis, two fMEG channels were selected: one where brain activity was previously detected and one at least 15 cm away, that represented a control channel. The usability of each metric was evaluated and results from the brain and control channel were compared. Concerning the ease of use with fMEG data, Lempel-Ziv-Complexity (LZC) was evaluated as best, as it is unequivocal and needs low computational effort. The fractality measures have a high number of parameters that need to be adjusted prior to analysis and therefore forfeit comparability, while entropy measures require a higher computational effort and more parameters to adjust compared to LZC. Comparison of a channel with brain activity and a control channel in neonatal recordings showed significant differences in most complexity metrics. This clear difference can be seen as proof of concept for the usability of complexity metrics in fMEG. For fetal data, this comparison produced less clear results which can be related to leftover maternal signals included in the control channel. Further work is necessary to conclusively interpret results from the analysis of fetal recordings. Yet this study shows that complexity metrics can be used for fMEG data on early consciousness and the evaluation gives a guidance for future work. The inconsistency of results from different metrics highlights the challenges of working with complexity metrics as neural correlates of consciousness, as well as the caution one should apply to interpret them.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3602-3605, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269075

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is defined as an excessive accumulation of fat in the liver in the absence of excessive drinking of alcohol. Initially considered as benign and self-limited, NAFLD may progress to the malignant stage of non-alcoholic steatohepatitis (NASH) characterized by degenerate hepatocellular ballooning and lobular inflammation. NASH can lead to hepatic fibrosis and ultimately to cirrhosis and hepatocellular carcinoma. Unfortunately, the transition from NAFLD to NASH is difficult to detect so far. In this paper, we propose to evaluate the characterization of NASH using mid infrared fiber evanescent wave spectroscopy on blood serum. We used an heuristic variable selection method and a generalized linear model to classify NAFLD and NASH spectra. The obtained results proved that this technique is a promising non-invasive and simple diagnosis tool for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica/diagnóstico , Espectrofotometria Infravermelho/métodos , Adulto , Diagnóstico Precoce , Fígado Gorduroso/sangue , Fígado Gorduroso/diagnóstico , Feminino , Humanos , Modelos Lineares , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Sensibilidade e Especificidade , Espectrofotometria Infravermelho/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA