Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 35(12): e22058, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34820908

RESUMO

Subretinal fibrosis is a key pathological feature in neovascular age-related macular degeneration (nAMD). Previously, we identified soluble very low-density lipoprotein receptor (sVLDLR) as an endogenous Wnt signaling inhibitor. This study investigates whether sVLDLR plays an anti-fibrogenic role in nAMD models, including Vldlr-/- mice and laser-induced choroidal neovascularization (CNV). We found that fibrosis factors including P-Smad2/3, α-SMA, and CTGF were upregulated in the subretinal area of Vldlr-/- mice and the laser-induced CNV model. The antibody blocking Wnt co-receptor LRP6 significantly attenuated the overexpression of fibrotic factors in these two models. Moreover, there was a significant reduction of sVLDLR in the interphotoreceptor matrix (IPM) in the laser-induced CNV model. A transgenic strain (sVLDLR-Tg) with sVLDLR overexpression in the IPM was generated. Overexpression of sVLDLR ameliorated the profibrotic changes in the subretinal area of the laser-induced CNV model. In addition, Wnt and TGF-ß signaling synergistically promoted fibrogenesis in human primary retinal pigment epithelium (RPE) cells. CRISPR/Cas9-mediated LRP6 gene knockout (KO) attenuated this synergistic effect. The disruption of VLDLR expression promoted, while the overexpression of sVLDLR inhibited TGF-ß-induced fibrosis. These findings suggest that overactivated Wnt signaling enhances the TGF-ß pathway in subretinal fibrosis. sVLDLR confers an antifibrotic effect, at least partially, through the inhibition of Wnt signaling and thus, has therapeutic potential for fibrosis.


Assuntos
Neovascularização de Coroide/complicações , Modelos Animais de Doenças , Fibrose/prevenção & controle , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Degeneração Macular/complicações , Receptores de LDL/fisiologia , Epitélio Pigmentado da Retina/patologia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Epitélio Pigmentado da Retina/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt
2.
J Biol Chem ; 297(4): 101185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509473

RESUMO

Very low-density lipoprotein receptor (VLDLR) is a multifunctional transmembrane protein. Beyond the function of the full-length VLDLR in lipid transport, the soluble ectodomain of VLDLR (sVLDLR) confers anti-inflammatory and antiangiogenic roles in ocular tissues through inhibition of canonical Wnt signaling. However, it remains unknown how sVLDLR is shed into the extracellular space. In this study, we present the first evidence that a disintegrin and metalloprotease 17 (ADAM17) is responsible for sVLDLR shedding in human retinal pigment epithelium cells using pharmacological and genetic approaches. Among selected proteinase inhibitors, an ADAM17 inhibitor demonstrated the most potent inhibitory effect on sVLDLR shedding. siRNA-mediated knockdown or CRISPR/Cas9-mediated KO of ADAM17 diminished, whereas plasmid-mediated overexpression of ADAM17 promoted sVLDLR shedding. The amount of shed sVLDLR correlated with an inhibitory effect on the Wnt signaling pathway. Consistent with these in vitro findings, intravitreal injection of an ADAM17 inhibitor reduced sVLDLR levels in the extracellular matrix in the mouse retina. In addition, our results demonstrated that ADAM17 cleaved VLDLR only in cells coexpressing these proteins, suggesting that shedding occurs in a cis manner. Moreover, our study demonstrated that aberrant activation of Wnt signaling was associated with decreased sVLDLR levels, along with downregulation of ADAM17 in ocular tissues of an age-related macular degeneration model. Taken together, our observations reveal the mechanism underlying VLDLR cleavage and identify a potential therapeutic target for the treatment of disorders associated with dysregulation of Wnt signaling.


Assuntos
Proteína ADAM17/metabolismo , Degeneração Macular/metabolismo , Receptores de LDL/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Via de Sinalização Wnt , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/genética , Animais , Modelos Animais de Doenças , Humanos , Degeneração Macular/genética , Camundongos , Camundongos Knockout , Domínios Proteicos , Receptores de LDL/genética
3.
Signal Transduct Target Ther ; 5(1): 45, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32345960

RESUMO

Previous studies by us and others demonstrated that activation of Wnt/ß-catenin signaling plays a pathogenic role in chronic kidney diseases (CKD). Wnt co-receptor LRP5 variants are reported to associate with autosomal dominant polycystic kidney disease; but their exact roles in this disease and renal fibrosis have not been explored. Here, we observed the upregulation of LRP5 in the renal tubules of both type 1 and type 2 diabetic models and of an obstructive nephropathy model. In the obstructed kidneys, Lrp5 knockout significantly ameliorated tubulointerstitial fibrosis and tubular injury without changing Wnt/ß-catenin signaling. Instead, decreased levels of TGF-ß1 and TGF-ß receptors (TßRs) were detected in Lrp5 knockout kidneys, followed by attenuated activation and nuclear translocation of Smad2/3 in the renal tubules, suggesting a regulatory effect of LRP5 on TGF-ß/Smad signaling. In consistent with this hypothesis, LRP5 overexpression resulted in enhanced TGF-ß/Smad signaling activation in renal tubule epithelial cells. Furthermore, LRP5 was co-immunoprecipitated with TßRI and TßRII, and its extracellular domain was essential for interacting with TßRs and for its pro-fibrotic activity. In addition to stabilizing TßRs, LRP5 increased the basal membrane presentation and TGF-ß1-induced internalization of these receptors. Notably, TGF-ß1 also induced LRP5 internalization. These findings indicate that LRP5 promotes tubulointerstitial fibrosis, at least partially, via direct modulation of TGF-ß/Smad signaling, a novel, Wnt-independent function.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Fibrose , Túbulos Renais/patologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genética
4.
Diabetes ; 69(6): 1279-1291, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213513

RESUMO

The purpose of this study was to investigate the protective role of peroxisome proliferator-activated receptor α (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from human donors with and without diabetes. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was downregulated in the corneas of humans with diabetes and diabetic rats. Immunostaining of ß-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which were partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα -/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα -/- mice relative to wild-type mice by 21 months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects the corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy.


Assuntos
Córnea/inervação , Diabetes Mellitus Experimental/patologia , Degeneração Neural/metabolismo , PPAR alfa/metabolismo , Animais , Regulação para Baixo , Fenofibrato/farmacologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipolipemiantes/farmacologia , Masculino , Degeneração Neural/tratamento farmacológico , PPAR alfa/genética , Ratos , Ratos Sprague-Dawley
5.
J Extracell Vesicles ; 9(1): 1692417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31807237

RESUMO

Tumour metastasis suppressor KAI1/CD82 inhibits tumour cell movement. As a transmembrane protein, tetraspanin CD82 bridges the interactions between membrane microdomains of lipid rafts and tetraspanin-enriched microdomains (TEMs). In this study, we found that CD82 and other tetraspanins contain cholesterol recognition/interaction amino-acid consensus (CRAC) sequences in their transmembrane domains and revealed that cholesterol binding of CD82 determines its interaction with lipid rafts but not with TEMs. Functionally, CD82 needs cholesterol binding to inhibit solitary migration, collective migration, invasion and infiltrative outgrowth of tumour cells. Importantly, CD82-cholesterol/-lipid raft interaction not only promotes extracellular release of lipid raft components such as cholesterol and gangliosides but also facilitates extracellular vesicle (EV)-mediated release of ezrin-radixin-moesin (ERM) protein Ezrin. Since ERM proteins link actin cytoskeleton to the plasma membrane, we show for the first time that cell movement can be regulated by EV-mediated releases, which disengage the plasma membrane from cytoskeleton and then impair cell movement. Our findings also conceptualize that interactions between membrane domains, in this case converge of lipid rafts and TEMs by CD82, can change cell movement. Moreover, CD82 coalescences with both lipid rafts and TEMs are essential for its inhibition of tumour cell movement and for its enhancement of EV release. Finally, our study underpins that tetraspanins as a superfamily of functionally versatile molecules are cholesterol-binding proteins. Abbreviations: Ab: antibody; CBM: cholesterol-binding motif; CCM: cholesterol consensus motif; CRAC/CARC: cholesterol recognition or interaction amino-acid consensus; CTxB: cholera toxin B subunit; ECM: extracellular matrix; ERM: ezrin, radixin and moesin; EV: extracellular vesicles; FBS: foetal bovine serum; mAb: monoclonal antibody; MST: microscale thermophoresis; pAb: polyclonal antibody; and TEM: tetraspanin-enriched microdomain.

6.
Kidney Int ; 91(3): 642-657, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27914705

RESUMO

Pigment epithelium-derived factor (PEDF) expression is downregulated in the kidneys of diabetic rats, and delivery of PEDF suppressed renal fibrotic factors in these animals. PEDF has multiple functions including anti-angiogenic, anti-inflammatory and antifibrotic activities. Since the mechanism underlying its antifibrotic effect remains unclear, we studied this in several murine models of renal disease. Renal PEDF levels were significantly reduced in genetic models of type 1 and type 2 diabetes (Akita and db/db, respectively), negatively correlating with Wnt signaling activity in the kidneys. In unilateral ureteral obstruction, an acute renal injury model, there were significant decreases of renal PEDF levels. The kidneys of PEDF knockout mice with ureteral obstruction displayed exacerbated expression of fibrotic and inflammatory factors, oxidative stress, tubulointerstitial fibrosis, and tubule epithelial cell apoptosis, compared to the kidneys of wild-type mice with obstruction. PEDF knockout enhanced Wnt signaling activation induced by obstruction, while PEDF inhibited the Wnt pathway-mediated fibrosis in primary renal proximal tubule epithelial cells. Additionally, oxidative stress was aggravated in renal proximal tubule epithelial cells isolated from knockout mice and suppressed by PEDF treatment of renal proximal tubule epithelial cells. PEDF also reduced oxidation-induced apoptosis in renal proximal tubule epithelial cells. Thus, the renoprotective effects of PEDF are mediated, at least partially, by inhibition of the Wnt pathway. Hence, restoration of renal PEDF levels may have therapeutic potential for renal fibrosis.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Nefropatias/prevenção & controle , Túbulos Renais Proximais/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Obstrução Ureteral/metabolismo , Via de Sinalização Wnt , Animais , Apoptose , Proteína Axina/genética , Proteína Axina/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais/patologia , Proteínas do Olho/genética , Fibrose , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/genética , Estresse Oxidativo , Fenótipo , Serpinas/deficiência , Serpinas/genética , Fatores de Tempo , Transfecção , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
7.
Clin Sci (Lond) ; 128(11): 805-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25881671

RESUMO

Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF's effects under these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized.


Assuntos
Diabetes Mellitus/fisiopatologia , Proteínas do Olho/fisiologia , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Fatores de Crescimento Neural/fisiologia , Serpinas/fisiologia , Adulto , Inibidores da Angiogênese/uso terapêutico , Diabetes Mellitus/genética , Proteínas do Olho/genética , Proteínas do Olho/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Hipóxia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/uso terapêutico , Serpinas/genética , Serpinas/uso terapêutico , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
PLoS One ; 9(10): e108454, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271989

RESUMO

Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR). Over-activation of the Wnt/ß-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/ß-catenin signaling in retinal neovascularization (NV) and DR remain undefined. In the present study, mice with conditional ß-catenin knockout (KO) in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetes. Wnt signaling was evaluated by measuring levels of ß-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the ß-catenin KO mice under normal conditions. In OIR, retinal levels of ß-catenin and VEGF were significantly lower in the ß-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of ß-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.


Assuntos
Células Ependimogliais/metabolismo , Isquemia/patologia , Neovascularização Patológica/metabolismo , Retina/metabolismo , Retina/patologia , Via de Sinalização Wnt , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Pericitos/metabolismo , Pericitos/patologia , Fenótipo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
J Tissue Viability ; 23(2): 69-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24513091

RESUMO

The primary purpose of this feasibility study was to establish a correlation between pro-inflammatory cytokine accumulation and severity of tissue damage during local pressure with various temperatures. The secondary purpose was to compare skin blood flow patterns for assessing the efficacy of local cooling on reducing skin ischemia under surface pressure. Eight Sprague-Dawley rats were assigned to two protocols, including pressure with local cooling (Δt = -10 °C) and pressure with local heating (Δt = 10 °C). Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin perfusion quantified by laser Doppler flowmetry and TNF-∗ and IL-1ß levels were measured. Our results showed that TNF-α concentrations were increased more significantly with local heating than with local cooling under pressure whereas IL-1ß did not change. Our results support the notion that weight bearing soft tissue damage may be reduced through temperature modulation and that non-invasive perfusion measurements using laser Doppler flowmetry may be capable of assessing viability. Furthermore, these results show that perfusion response to loading pressure may be correlated with changes in local pro-inflammatory cytokines. These relationships may be relevant for the development of cooling technologies for reducing risk of pressure ulcers.


Assuntos
Temperatura Baixa , Citocinas/análise , Pele/irrigação sanguínea , Pele/química , Animais , Estudos de Viabilidade , Masculino , Pressão , Ratos Sprague-Dawley , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA