Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 5(3): eaau3826, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899781

RESUMO

For more than two decades, there have been reports on an unexpected metallic state separating the established superconducting and insulating phases of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here, we show that for two very different thin-film superconductors, amorphous indium oxide and a single crystal of 2H-NbSe2, this metallic state can be eliminated by adequately filtering external radiation. Our results show that the appearance of temperature-independent, metallic-like transport at low temperatures is sufficiently described by the extreme sensitivity of these superconducting films to external perturbations. We relate this sensitivity to the theoretical observation that, in two dimensions, superconductivity is only marginally stable.

2.
Nature ; 535(7612): 395-400, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27443742

RESUMO

One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

3.
Nat Nanotechnol ; 8(8): 569-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23912108

RESUMO

The ability to tune local parameters of quantum Hamiltonians has been demonstrated in experimental systems including ultracold atoms, trapped ions, superconducting circuits and photonic crystals. Such systems possess negligible disorder, enabling local tunability. Conversely, in condensed-matter systems, electrons are subject to disorder, which often destroys delicate correlated phases and precludes local tunability. The realization of a disorder-free and locally-tunable condensed-matter system thus remains an outstanding challenge. Here, we demonstrate a new technique for deterministic creation of locally-tunable, ultralow-disorder electron systems in carbon nanotubes suspended over complex electronic circuits. Using transport experiments we show that electrons can be localized at any position along the nanotube and that the confinement potential can be smoothly moved from location to location. The high mirror symmetry of transport characteristics about the nanotube centre establishes the negligible effects of electronic disorder, thus allowing experiments in precision-engineered one-dimensional potentials. We further demonstrate the ability to position multiple nanotubes at chosen separations, generalizing these devices to coupled one-dimensional systems. These capabilities could enable many novel experiments on electronics, mechanics and spins in one dimension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA