Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 8(4): 1943-52, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19714815

RESUMO

The mechanism of action of standard drug treatments for psychiatric disorders remains fundamentally unknown, despite intensive investigation in academia and the pharmaceutical industry. So far, little is known about the effects of psychotropic medications on brain metabolism in either humans or animals. In this study, we investigated the effects of a range of psychotropic drugs on rat brain metabolites. The drugs investigated were haloperidol, clozapine, olanzapine, risperidone, aripiprazole (antipsychotics); valproate, carbamazapine (mood stabilizers) and phenytoin (antiepileptic drug). The relative concentrations of endogenous metabolites were determined using high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy. The results revealed that different classes of psychotropic drugs modulated a range of metabolites, where each drug induced a distinct neurometabolic profile. Some common responses across several drugs or within a class of drug were also observed. Antipsychotic drugs and mood stabilizers, with the exception of olanzapine, consistently increased N-acetylaspartate (NAA) levels in at least one brain area, suggesting a common therapeutic response on increased neuronal viability. Most drugs also altered the levels of several metabolites associated with glucose metabolism, neurotransmission (including glutamate and aspartate) and inositols. The heterogenic pharmacological response reflects the functional and physiological diversity of the therapeutic interventions, including side effects. Further study of these metabolites in preclinical models should facilitate the development of novel drug treatments for psychiatric disorders with improved efficacy and side effect profiles.


Assuntos
Encéfalo/fisiologia , Oligodendroglia/fisiologia , Psicotrópicos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Oligodendroglia/efeitos dos fármacos , Ratos
2.
J Proteome Res ; 8(7): 3284-97, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19400588

RESUMO

Haloperidol and olanzapine are widely used antipsychotic drugs in the treatment of schizophrenia and other psychotic disorders. Despite extensive research efforts within the biopharmaceutical industry and academia, the exact molecular mechanisms of their action remain largely unknown. Since the response of patients to existing medications can be variable and often includes severe side effects, it is critical to increase our knowledge on their mechanism of action to guide clinical usage and new drug development. In this study, we have employed the label-free liquid chromatography tandem mass spectrometry (LC-MSE) to identify differentially expressed proteins in rat frontal cortex following subchronic treatment with haloperidol or olanzapine. Subcellular fractionation was performed to increased proteomic coverage and provided insight into the subcellular location involved in the mechanism of drug action. LC-MSE profiling identified 531 and 741 annotated proteins in fractions I (cytoplasmic-) and II (membrane enriched-) in two drug treatments. Fifty-nine of these proteins were altered significantly by haloperidol treatment, 74 by olanzapine and 21 were common to both treatments. Pathway analysis revealed that both drugs altered similar classes of proteins associated with cellular assembly/organization, nervous system development/function (particularly presynaptic function) and neurological disorders, which indicate a common mechanism of action. The top affected canonical signaling pathways differed between the two treatments. The haloperidol data set showed a stronger association with Huntington's disease signaling, while olanzapine treatment showed stronger effects on glycolysis/gluconeogenesis. This could either relate to a difference in clinical efficacy or side effect profile of the two compounds. The results were consistent with the findings reported previously by targeted studies, demonstrating the validity of this approach. However, we have also identified many novel proteins which have not been found previously to be associated with these drugs. Further study of these proteins could provide new insights into the etiology of the disease or the mechanism of antipsychotic medications.


Assuntos
Antipsicóticos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Lobo Frontal/efeitos dos fármacos , Animais , Benzodiazepinas/farmacologia , Cromatografia Líquida/métodos , Detergentes/farmacologia , Haloperidol/farmacologia , Masculino , Espectrometria de Massas/métodos , Sistema Nervoso/efeitos dos fármacos , Olanzapina , Proteômica/métodos , Ratos , Ratos Wistar , Transmissão Sináptica
3.
Eur Neuropsychopharmacol ; 19(5): 339-48, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19189879

RESUMO

Genetic studies have implicated the evolutionary novel, primates-specific gene locus G72/G30 in schizophrenia, bipolar and panic disorders. It encodes for a protein LG72 whose function has been controversially discussed as putative regulator of the peroxisomal enzyme D-amino-acid-oxidase (DAO), or as a mitochondrial protein, which promotes robust mitochondrial fragmentation in mammalian cell lines including human and rat primary neurons. Because of this conserved function we here have generated "humanized" BAC transgenic mice (G72Tg) expressing alternatively spliced G72 and G30 transcripts, and the LG72 protein. G72 expression is prominent in granular cells of the cerebellum, the hippocampus, the cortex and the olfactory bulb. Most strikingly, G72Tg mice displayed deficits in sensorimotor gating which could be reversed with haloperidol, increased sensitivity to PCP, motor-coordination deficits, increased compulsive behaviors and deficits in smell identification. These results demonstrate that expression of the human G72/G30 gene locus in mice produces behavioral phenotypes that are relevant to psychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Transporte/genética , Proteínas/genética , Animais , Encéfalo/citologia , Comportamento Compulsivo/genética , Antagonistas de Dopamina/farmacologia , Haloperidol/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Transtornos das Habilidades Motoras/genética , Transtornos do Olfato/genética , Fenciclidina/farmacologia , RNA Mensageiro/metabolismo , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia
4.
BMC Psychiatry ; 8: 94, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19077230

RESUMO

BACKGROUND: Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO), supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. METHODS: The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. RESULTS: Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis) human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala), spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. CONCLUSION: Our results suggest that native G72 protein is not normally present in the tissues that we analysed in this study. We also conclude that the lack of demonstrable G72 expression in relevant brain regions does not support a role for G72 in modulation of DAO activity and the pathology of schizophrenia via a DAO-mediated mechanism. In silico analysis suggests that G72 is not robustly expressed and that the transcript is potentially labile. Further studies are required to understand the significance of the G72/30 locus to schizophrenia.


Assuntos
Transtorno Bipolar/genética , Encéfalo/metabolismo , Proteínas de Transporte/genética , RNA Mensageiro/genética , Esquizofrenia/genética , Linhagem Celular , Mapeamento Cromossômico , Cromossomos Humanos Par 13/genética , D-Aminoácido Oxidase/genética , Ativação Enzimática/genética , Predisposição Genética para Doença/genética , Ácido Glutâmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Técnicas de Sonda Molecular , Polimorfismo Genético/genética , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas/genética
5.
Eur J Neurosci ; 26(6): 1657-69, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17880399

RESUMO

The N-methyl-D-aspartate receptor co-agonist d-serine is synthesized by serine racemase and degraded by D-amino acid oxidase. Both D-serine and its metabolizing enzymes are implicated in N-methyl-D-aspartate receptor hypofunction thought to occur in schizophrenia. We studied D-amino acid oxidase and serine racemase immunohistochemically in several brain regions and compared their immunoreactivity and their mRNA levels in the cerebellum and dorsolateral prefrontal cortex in schizophrenia. D-Amino acid oxidase immunoreactivity was abundant in glia, especially Bergmann glia, of the cerebellum, whereas in prefrontal cortex, hippocampus and substantia nigra, it was predominantly neuronal. Serine racemase was principally glial in all regions examined and demonstrated prominent white matter staining. In schizophrenia, D-amino acid oxidase mRNA was increased in the cerebellum, and as a trend for protein. Serine racemase was increased in schizophrenia in the dorsolateral prefrontal cortex but not in cerebellum, while serine racemase mRNA was unchanged in both regions. Administration of haloperidol to rats did not significantly affect serine racemase or D-amino acid oxidase levels. These findings establish the major cell types wherein serine racemase and D-amino acid oxidase are expressed in human brain and provide some support for aberrant D-serine metabolism in schizophrenia. However, they raise further questions as to the roles of D-amino acid oxidase and serine racemase in both physiological and pathophysiological processes in the brain.


Assuntos
Encéfalo/enzimologia , D-Aminoácido Oxidase/metabolismo , Racemases e Epimerases/metabolismo , Esquizofrenia/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antipsicóticos/farmacologia , Western Blotting , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Haloperidol/farmacologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Behav Brain Funct ; 3: 31, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17598910

RESUMO

BACKGROUND: Evidence of genetic association between the NRG1 (Neuregulin-1) gene and schizophrenia is now well-documented. Furthermore, several recent reports suggest association between schizophrenia and single-nucleotide polymorphisms (SNPs) in ERBB4, one of the receptors for Neuregulin-1. In this study, we have extended the previously published associations by investigating the involvement of all eight genes from the ERBB and NRG families for association with schizophrenia. METHODS: Eight genes from the ERBB and NRG families were tested for association to schizophrenia using a collection of 396 cases and 1,342 blood bank controls ascertained from Aberdeen, UK. A total of 365 SNPs were tested. Association testing of both alleles and genotypes was carried out using the fast Fisher's Exact Test (FET). To understand better the nature of the associations, all pairs of SNPs separated by >or= 0.5 cM with at least nominal evidence of association (P < 0.10) were tested for evidence of pairwise interaction by logistic regression analysis. RESULTS: 42 out of 365 tested SNPs in the eight genes from the ERBB and NRG gene families were significantly associated with schizophrenia (P < 0.05). Associated SNPs were located in ERBB4 and NRG1, confirming earlier reports. However, novel associations were also seen in NRG2, NRG3 and EGFR. In pairwise interaction tests, clear evidence of gene-gene interaction was detected for NRG1-NRG2, NRG1-NRG3 and EGFR-NRG2, and suggestive evidence was also seen for ERBB4-NRG1, ERBB4-NRG2, ERBB4-NRG3 and ERBB4-ERBB2. Evidence of intragenic interaction was seen for SNPs in ERBB4. CONCLUSION: These new findings suggest that observed associations between NRG1 and schizophrenia may be mediated through functional interaction not just with ERBB4, but with other members of the NRG and ERBB families. There is evidence that genetic interaction among these loci may increase susceptibility to schizophrenia.

7.
Mol Biochem Parasitol ; 142(2): 203-11, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15890416

RESUMO

The membrane-bound acid phosphatase (MBAP), a Type I membrane protein predominantly associated with endosomal/lysosomal structures of Leishmania mexicana promastigotes, contains motifs in its cytosolic COOH-terminal tail (-MEVWRRYMKFKNKQSEAIIV-COOH) akin to tyrosine- and di-leucine-based sorting signals in multicellular organisms. Here, we first show that the COOH-terminal residues IIV of MBAP, but not the Y-residue, are required for endosomal targeting, suggesting specific binding to an adaptor complex at the cell surface. We then determine whether specific binding can be saturated by analysing the efficiency of endosomal targeting for increasing numbers of MBAP molecules per cell. The ratio of the steady-state abundance of wild-type MBAP on the cell surface to MBAP on endosomes increases until the distribution is no longer different from that observed for a mutant MBAP which lacks the IIV-motif or for a glycosylphosphatidylinositol-anchored form, both of which are distributed according to bulk membrane flow. A quantitative analysis of these in vivo results indicates specific binding to a putative adaptor complex with an affinity of about 10-4M to 50,000 sorting sites on the cell surface.


Assuntos
Fosfatase Ácida/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Regulação da Expressão Gênica , Leishmania mexicana/enzimologia , Proteínas de Membrana/metabolismo , Transporte Proteico , Fosfatase Ácida/química , Fosfatase Ácida/genética , Sequência de Aminoácidos , Animais , Endossomos/metabolismo , Citometria de Fluxo , Membranas Intracelulares/metabolismo , Leishmania mexicana/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese , Sinais Direcionadores de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA