Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mar Drugs ; 21(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37755094

RESUMO

Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.

2.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505684

RESUMO

Snakes of the Philodryadini tribe are included in the Dipsadidae family, which is a diverse group of rear-fanged snakes widespread in different ecological conditions, including habitats and diet. However, little is known about the composition and effects of their venoms despite their relevance for understanding the evolution of these snakes or even their impact on the occasional cases of human envenoming. In this study, we integrated venom gland transcriptomics, venom proteomics and functional assays to characterize the venoms from eight species of the Philodryadini tribe, which includes the genus Philodryas, Chlorosoma and Xenoxybelis. The most abundant components identified in the venoms were snake venom metalloproteinases (SVMPs), cysteine-rich secretory proteins (CRISPs), C-type lectins (CTLs), snake endogenous matrix metalloproteinases type 9 (seMMP-9) and snake venom serinoproteinases (SVSPs). These protein families showed a variable expression profile in each genus. SVMPs were the most abundant components in Philodryas, while seMMP-9 and CRISPs were the most expressed in Chlorosoma and Xenoxybelis, respectively. Lineage-specific differences in venom composition were also observed among Philodryas species, whereas P. olfersii presented the highest amount of SVSPs and P. agassizii was the only species to express significant amounts of 3FTx. The variability observed in venom composition was confirmed by the venom functional assays. Philodryas species presented the highest SVMP activity, whereas Chlorosoma species showed higher levels of gelatin activity, which may correlate to the seMMP-9 enzymes. The variability observed in the composition of these venoms may be related to the tribe phylogeny and influenced by their diets. In the presented study, we expanded the set of venomics studies of the Philodryadini tribe, which paves new roads for further studies on the evolution and ecology of Dipsadidae snakes.


Assuntos
Colubridae , Venenos de Serpentes , Animais , Humanos , Venenos de Serpentes/metabolismo , Colubridae/genética , Colubridae/metabolismo , Proteômica/métodos , Filogenia , Metaloproteases/genética , Metaloproteases/metabolismo , América do Sul
3.
Toxins (Basel) ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37104176

RESUMO

The Buthidae family of scorpions consists of arthropods with significant medical relevance, as their venom contains a diverse range of biomolecules, including neurotoxins that selectively target ion channels in cell membranes. These ion channels play a crucial role in regulating physiological processes, and any disturbance in their activity can result in channelopathies, which can lead to various diseases such as autoimmune, cardiovascular, immunological, neurological, and neoplastic conditions. Given the importance of ion channels, scorpion peptides represent a valuable resource for developing drugs with targeted specificity for these channels. This review provides a comprehensive overview of the structure and classification of ion channels, the action of scorpion toxins on these channels, and potential avenues for future research. Overall, this review highlights the significance of scorpion venom as a promising source for discovering novel drugs with therapeutic potential for treating channelopathies.


Assuntos
Canalopatias , Venenos de Escorpião , Animais , Humanos , Escorpiões/química , Canalopatias/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Canais Iônicos/metabolismo , Desenvolvimento de Medicamentos , Venenos de Escorpião/química
4.
J Proteomics ; 274: 104824, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646272

RESUMO

Among the scorpions found in Brazil, Tityus bahiensis is one of the species that causes most of the reported human accidents. In spite of this important constatation, the venom composition description is not available in the literature. Thus, this venom remains not properly studied, segregating this particular species into an abandoned, forgotten condition. In the present study, chromatographic separation (RP-HPLC-C18) and proteomic analyses were employed to unravel the diversity, complexity, and proportional distribution of the main peptides and proteins found in the scorpion venom. Moreover, sequence analyses and the presence of new isoforms and toxins are discussed based on a database comparison with other Tityus toxins. Our results show the presence of a wide diversity of potassium and sodium channel toxins and enzymes, such as metallopeptidases and hyaluronidases, as previously described for other species. However, the current work also describes for the first time, at the protein level, phospholipase, angiotensin-converting enzyme, cysteine-rich proteins, serine peptidase inhibitors peptides, and antimicrobial peptides. Finally, thorough data analyses allowed the description of the venom toxins distribution regarding their diversity and relative quantity. SIGNIFICANCE: The work presents the first Tityus bahiensis proteome. We have focused on describing the neurotoxin variability in terms of their isoforms/amino acid substitutions. Understanding the natural variations in the toxins' sequences is essential, once the affinity of these peptides to their respective receptors/ionic channels will vary depending on the specific peptide sequences. Moreover, the current study describes some proteins present in the venom, including enzymes being described for the first time in scorpion venoms, such as PLA2 and ACE. Moreover, we describe the individual relative quantity distribution for the different protein classes identified, as well as their variability in the T.bahiensis venom. Finally, this study also reports the development of a simple straightforward chromatographic method for scorpion venom fractionation.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Humanos , Escorpiões/metabolismo , Proteômica , Sequência de Aminoácidos , Peptídeos/metabolismo , Venenos de Escorpião/química
5.
J Chromatogr A ; 1677: 463292, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35853426

RESUMO

The ability to reversibly bind carbohydrates is an incredible property from lectins. Such characteristic has led these molecules to be employed in several applications involving medical research and biotechnology. Generally, these proteins follow several steps towards purification. Here, the synthesis, physical characterization, and use of levan-coated magnetite nanoparticles (MNPs-levan) for lectin isolation is described. Canavalia ensiformis and Cratylia mollis were used as sources of Concanavalin A and Cramoll, respectively, that were purified by using MNPs-levan. Mass spectrometry, SDS-PAGE, and hemagglutinating activity were employed to assess the efficiency of the process. Moreover, by using mass spectrometry approaches, a novel lectin, similar to Canavalin, was also identified for C. mollis, corroborating the advantages of using nanoparticles over microparticles. MNPs-levan could also be recycled, making this a low-cost, scalable process that can be efficiently employed over crude samples.


Assuntos
Fabaceae , Nanopartículas de Magnetita , Fabaceae/química , Óxido Ferroso-Férrico , Frutanos , Lectinas/análise , Lectinas/química , Extratos Vegetais/análise , Lectinas de Plantas/química , Plantas/metabolismo , Sementes/química
6.
Toxins (Basel) ; 13(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34941689

RESUMO

Among the vast repertoire of animal toxins and venoms selected by nature and evolution, mankind opted to devote its scientific attention-during the last century-to a restricted group of animals, leaving a myriad of toxic creatures aside. There are several underlying and justifiable reasons for this, which include dealing with the public health problems caused by envenoming by such animals. However, these studies became saturated and gave rise to a whole group of animals that become neglected regarding their venoms and secretions. This repertoire of unexplored toxins and venoms bears biotechnological potential, including the development of new technologies, therapeutic agents and diagnostic tools and must, therefore, be assessed. In this review, we will approach such topics through an interconnected historical and scientific perspective that will bring up the major discoveries and innovations in toxinology, achieved by researchers from the Butantan Institute and others, and describe some of the major research outcomes from the study of these neglected animals.


Assuntos
Desenvolvimento de Medicamentos , Toxinas Biológicas/toxicidade , Peçonhas/toxicidade , Animais , Humanos
7.
J. venom. anim. toxins incl. trop. dis ; 27: e20200125, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287096

RESUMO

Background Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.(AU)


Assuntos
Animais , Proteômica/classificação , Venenos Elapídicos/enzimologia
8.
Toxins (Basel) ; 12(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973132

RESUMO

Here, we report the neurotoxic effects aroused by the intracerebral injection (in rats) of Tb1, which is a neurotoxin isolated from Tityus bahiensis scorpion venom. Biochemical analyses have demonstrated that this toxin is similar to the gamma toxin from T. serrulatus, which is a ß-scorpion toxin that acts on sodium channels, causing the activation process to occur at more hyperpolarized membrane voltages. Male Wistar rats were stereotaxically implanted with intrahippocampal electrodes and cannulas for electroencephalographic recording and the evaluation of amino acid neurotransmitters levels. Treated animals displayed behavioral and electroencephalographic alterations similar to epileptiform activities, such as myoclonus, wet dog shakes, convulsion, strong discharges, neuronal loss, and increased intracerebral levels of glutamate. Scorpion toxins are important pharmacological tools that are widely employed in ion channel dysregulation studies. The current work contributes to the understanding of channelopathies, particularly epilepsy, which may originate, among other events, from dysfunctional sodium channels, which are the main target of the Tb1 toxin.


Assuntos
Ácido Glutâmico/metabolismo , Neurotoxinas/toxicidade , Venenos de Escorpião/toxicidade , Convulsões/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiologia , Masculino , Neurotoxinas/química , Ratos Wistar , Venenos de Escorpião/química , Escorpiões , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia , Canais de Sódio/fisiologia
9.
Toxins (Basel) ; 10(6)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921762

RESUMO

Scorpion venoms are composed of several substances with different pharmacological activities. Neurotoxins exert their effects by targeting ion channels resulting in toxic effects to mammals, insects and crustaceans. Tb II-I, a fraction isolated from Tityus bahiensis scorpion venom, was investigated for its ability to induce neurological and immune-inflammatory effects. Two putative β-sodium channel toxins were identified in this fraction, Tb2 II and Tb 4, the latter having been completely sequenced by mass spectrometry. Male Wistar rats, stereotaxically implanted with intrahippocampal cannulas and electrodes, were injected with Tb II-I (2 µg/2 µL) via the intrahippocampal route. The behavior, electrographic activity and cellular integrity of the animals were analyzed and the intracerebral level of cytokines determined. Tb II-I injection induced seizures and damage in the hippocampus. These alterations were correlated with the changes in the level of the cytokines tumoral necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Therefore, the binding of Tb II-I to its target in the central nervous system may induce inflammation resulting in neuropathological and behavioral alterations.


Assuntos
Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Neurotoxinas/toxicidade , Venenos de Escorpião/química , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/fisiologia , Injeções , Masculino , Ratos Wistar , Convulsões/induzido quimicamente
10.
Artigo em Inglês | LILACS | ID: biblio-894170

RESUMO

In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus, T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis. Little information is available regarding the other Brazilian Tityus species.(AU)


Assuntos
Animais , Intoxicação/complicações , Venenos de Escorpião/toxicidade , Escorpiões , Sistema Nervoso Central/patologia , Venenos de Escorpião/farmacocinética , Brasil
11.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484742

RESUMO

In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus, T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis. Little information is available regarding the other Brazilian Tityus species.


Assuntos
Humanos , Animais , Escorpiões , Intoxicação/complicações , Sistema Nervoso Central , Venenos de Escorpião , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA