Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Annu Rev Phytopathol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857541

RESUMO

Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.

2.
Environ Microbiome ; 19(1): 12, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383442

RESUMO

BACKGROUND: Potato seed tubers are colonized and inhabited by soil-borne microbes, that can affect the performance of the emerging daughter plant in the next season. In this study, we investigated the intergenerational inheritance of microbiota from seed tubers to next-season daughter plants under field condition by amplicon sequencing of bacterial and fungal microbiota associated with tubers and roots, and tracked the microbial transmission from different seed tuber compartments to sprouts. RESULTS: We observed that field of production and potato genotype significantly (P < 0.01) affected the composition of the seed tuber microbiome and that these differences persisted during winter storage of the seed tubers. Remarkably, when seed tubers from different production fields were planted in a single trial field, the microbiomes of daughter tubers and roots of the emerging plants could still be distinguished (P < 0.01) according to the production field of the seed tuber. Surprisingly, we found little vertical inheritance of field-unique microbes from the seed tuber to the daughter tubers and roots, constituting less than 0.2% of their respective microbial communities. However, under controlled conditions, around 98% of the sprout microbiome was found to originate from the seed tuber and had retained their field-specific patterns. CONCLUSIONS: The field of production shapes the microbiome of seed tubers, emerging potato plants and even the microbiome of newly formed daughter tubers. Different compartments of seed tubers harbor distinct microbiomes. Both bacteria and fungi on seed tubers have the potential of being vertically transmitted to the sprouts, and the sprout subsequently promotes proliferation of a select number of microbes from the seed tuber. Recognizing the role of plant microbiomes in plant health, the initial microbiome of seed tubers specifically or planting materials in general is an overlooked trait. Elucidating the relative importance of the initial microbiome and the mechanisms by which the origin of planting materials affect microbiome assembly will pave the way for the development of microbiome-based predictive models that may predict the quality of seed tuber lots, ultimately facilitating microbiome-improved potato cultivation.

4.
Microbiome ; 12(1): 13, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243337

RESUMO

BACKGROUND: Plant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis. RESULTS: Using partitioned microcosms containing field soil, we discovered that AM hyphae and roots selectively assemble their own microbiome from the surrounding soil. In two independent experiments, we identified several bacterial genera, including Devosia, that are consistently enriched on AM hyphae. Subsequently, we isolated 144 pure bacterial isolates from a mycorrhiza-rich sample of extraradical hyphae and isolated Devosia sp. ZB163 as root and hyphal colonizer. We show that this AM-associated bacterium synergistically acts with mycorrhiza on the plant root to strongly promote plant growth, nitrogen uptake, and mycorrhization. CONCLUSIONS: Our results highlight that AM fungi do not function in  isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis. Video Abstract.


Assuntos
Micorrizas , Simbiose , Raízes de Plantas/microbiologia , Plantas , Bactérias/genética , Solo
5.
Environ Microbiol Rep ; 16(1): e13205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018445

RESUMO

Soil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms. In microcosms that were inoculated with fungi, litter loss was 47% higher than in microcosms that were not inoculated or only inoculated with bacteria. Combined inoculation with both bacteria and fungi did not significantly enhance decomposition compared with the fungi-only treatments, and, as such, we found no evidence for complementary effects using our experimental setup. Inoculation with fungi also had a positive impact on plant growth after 4 and 8 weeks (480% and 710% growth stimulation, respectively). After 16 weeks, plant biomass was highest in microcosms where both bacteria and fungi were present pointing to fungal-bacterial complementarity in stimulating plant growth. Overall, this study suggests that fungi are the main decomposers of plant litter and that the inoculated fungi contribute to plant growth in our experimental system.


Assuntos
Fungos , Plantas , Fungos/genética , Biomassa , Desenvolvimento Vegetal , Raízes de Plantas , Folhas de Planta/microbiologia , Ecossistema , Microbiologia do Solo
6.
Nat Microbiol ; 8(12): 2349-2364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973867

RESUMO

Hyaloperonospora arabidopsidis (Hpa) is an obligately biotrophic downy mildew that is routinely cultured on Arabidopsis thaliana hosts that harbour complex microbiomes. We hypothesized that the culturing procedure proliferates Hpa-associated microbiota (HAM) in addition to the pathogen and exploited this model system to investigate which microorganisms consistently associate with Hpa. Using amplicon sequencing, we found nine bacterial sequence variants that are shared between at least three out of four Hpa cultures in the Netherlands and Germany and comprise 34% of the phyllosphere community of the infected plants. Whole-genome sequencing showed that representative HAM bacterial isolates from these distinct Hpa cultures are isogenic and that an additional seven published Hpa metagenomes contain numerous sequences of the HAM. Although we showed that HAM benefit from Hpa infection, HAM negatively affect Hpa spore formation. Moreover, we show that pathogen-infected plants can selectively recruit HAM to both their roots and shoots and form a soil-borne infection-associated microbiome that helps resist the pathogen. Understanding the mechanisms by which infection-associated microbiomes are formed might enable breeding of crop varieties that select for protective microbiomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Oomicetos , Arabidopsis/genética , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Oomicetos/genética
7.
Sci Rep ; 12(1): 22473, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577764

RESUMO

Plants deposit photosynthetically-fixed carbon in the rhizosphere, the thin soil layer directly around the root, thereby creating a hospitable environment for microbes. To manage the inhabitants of this nutrient-rich environment, plant roots exude and dynamically adjust microbe-attracting and -repelling compounds to stimulate specific members of the microbiome. Previously, we demonstrated that foliar infection of Arabidopsis thaliana by the biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) leads to a disease-induced modification of the rhizosphere microbiome. Soil conditioned with Hpa-infected plants provided enhanced protection against foliar downy mildew infection in a subsequent population of plants, a phenomenon dubbed the soil-borne legacy (SBL). Here, we show that for the creation of the SBL, plant-produced coumarins play a prominent role as coumarin-deficient myb72 and f6'h1 mutants were defective in creating a Hpa-induced SBL. Root exudation profiles changed significantly in Col-0 upon foliar Hpa infection, and this was accompanied by a compositional shift in the root microbiome that was significantly different from microbial shifts occurring on roots of Hpa-infected coumarin-deficient mutants. Our data further show that the Hpa-induced SBL primes Col-0 plants growing in SBL-conditioned soil for salicylic acid (SA)-dependent defenses. The SA-signaling mutants sid2 and npr1 were unresponsive to the Hpa-induced SBL, suggesting that the protective effect of the Hpa-induced shift in the root microbiome results from an induced systemic resistance that requires SA-signaling in the plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Peronospora , Proteínas de Arabidopsis/genética , Ácido Salicílico/farmacologia , Arabidopsis/metabolismo , Cumarínicos/farmacologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
10.
Microorganisms ; 9(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799825

RESUMO

Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6'h1. We found that coumarins in F6'H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6'H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins' function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.

11.
Plants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672351

RESUMO

Pseudomonas simiae PICF7 is an indigenous inhabitant of the olive (Olea europaea L.) rhizosphere/root endosphere and an effective biocontrol agent against Verticillium wilt of olive (VWO), caused by the soil-borne fungus Verticillium dahliae. This study aimed to evaluate the potential involvement of selected phenotypes of strain PICF7 in root colonization ability and VWO biocontrol. Therefore, a random transposon-insertion mutant bank of P. simiae PICF7 was screened for the loss of phenotypes likely involved in rhizosphere/soil persistence (copper resistance), root colonization (biofilm formation) and plant growth promotion (phytase activity). Transposon insertions in genes putatively coding for the transcriptional regulator CusR or the chemotaxis protein CheV were found to affect copper resistance, whereas an insertion in fleQ gene putatively encoding a flagellar regulatory protein hampered the ability to form a biofilm. However, these mutants displayed the same antagonistic effect against V. dahliae as the parental strain. Remarkably, two mutants impaired in biofilm formation were never found inside olive roots, whereas their ability to colonize the root exterior and to control VWO remained unaffected. Endophytic colonization of olive roots was unaltered in mutants impaired in copper resistance and phytase production. Results demonstrated that the phenotypes studied were irrelevant for VWO biocontrol.

12.
Methods Mol Biol ; 2232: 209-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161550

RESUMO

The rhizosphere microbiome of plants is essential for plant growth and health. Recent studies have shown that upon infection of leaves with a foliar pathogen, the composition of the root microbiome is altered and enriched with bacteria that in turn can systemically protect the plant against the foliar pathogen. This protective effect is extended to successive populations of plants that are grown on soil that was first conditioned by pathogen-infected plants, a phenomenon that was coined "the soil-borne legacy." Here we provide a detailed protocol for soil-borne legacy experiments with the model plant Arabidopsis thaliana after infection with the obligate biotrophic pathogen Hyaloperonospora arabidopsidis. This protocol can easily be extended to infection with other pathogens or even infestation with herbivorous insects and can function as a blueprint for soil-borne legacy experiments with crop species.


Assuntos
Arabidopsis/microbiologia , Resistência à Doença/genética , Microbiota/genética , Doenças das Plantas/microbiologia , Arabidopsis/genética , Interações Hospedeiro-Patógeno/genética , Oomicetos/patogenicidade , Doenças das Plantas/genética , Microbiologia do Solo
13.
Methods Mol Biol ; 2232: 305-317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161556

RESUMO

In nature and agriculture, plants interact with an astonishing number of microbes, collectively referred to as the "plant microbiome." Roots are a microbial hotspot where beneficial plant-microbe interactions are established that support plant growth and provide protection against pathogens and insects. Recently, we discovered that in response to foliar pathogen attack, plant roots can recruit specific protective microbes into the rhizosphere. Root exudates play an essential role in the interaction between plant roots and rhizosphere microbiota. In order to study the chemical communication between plant roots and the rhizosphere microbiome, it is essential to study the metabolite profile of root exudates. Here, we describe a detailed protocol for the collection of sterile root exudates that are secreted by Arabidopsis thaliana roots in response to inoculation of the leaves with the biotrophic pathogen Hyaloperonospora arabidopsidis.


Assuntos
Arabidopsis/microbiologia , Microbiota/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Oomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Exsudatos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo
14.
Mol Plant ; 13(10): 1394-1401, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32979564

RESUMO

Looking forward includes looking back every now and then. In 2007, David Weller looked back at 30 years of biocontrol of soil-borne pathogens by Pseudomonas and signified that the progress made over decades of research has provided a firm foundation to formulate current and future research questions. It has been recognized for more than a century that soil-borne microbes play a significant role in plant growth and health. The recent application of high-throughput omics technologies has enabled detailed dissection of the microbial players and molecular mechanisms involved in the complex interactions in plant-associated microbiomes. Here, we highlight old and emerging plant microbiome concepts related to plant disease control, and address perspectives that modern and emerging microbiomics technologies can bring to functionally characterize and exploit plant-associated microbiomes for the benefit of plant health in future microbiome-assisted agriculture.


Assuntos
Microbiologia do Solo , Microbiota/genética , Microbiota/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera
15.
Curr Biol ; 29(22): 3913-3920.e4, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31668625

RESUMO

The root microbiome consists of commensal, pathogenic, and plant-beneficial microbes [1]. Most members of the root microbiome possess microbe-associated molecular patterns (MAMPs) similar to those of plant pathogens [2]. Their recognition can lead to the activation of host immunity and suppression of plant growth due to growth-defense tradeoffs [3, 4]. We found that 42% of the tested root microbiota, including the plant growth-promoting rhizobacteria Pseudomonas capeferrum WCS358 [5, 6] and Pseudomonas simiae WCS417 [6, 7], are able to quench local Arabidopsis thaliana root immune responses that are triggered by flg22 [8], an immunogenic epitope of the MAMP flagellin [9], suggesting that this is an important function of the root microbiome. In a screen for WCS358 mutants that lost their capacity to suppress flg22-induced CYP71A12pro:GUS MAMP-reporter gene expression, we identified the bacterial genes pqqF and cyoB in WCS358, which are required for the production of gluconic acid and its derivative 2-keto gluconic acid. Both WCS358 mutants are impaired in the production of these organic acids and consequently lowered their extracellular pH to a lesser extent than wild-type WCS358. Acidification of the plant growth medium similarly suppressed flg22-induced CYP71A12pro:GUS and MYB51pro:GUS expression, and the flg22-mediated oxidative burst, suggesting a role for rhizobacterial gluconic acid-mediated modulation of the extracellular pH in the suppression of root immunity. Rhizosphere population densities of the mutants were significantly reduced compared to wild-type. Collectively, these findings show that suppression of immune responses is an important function of the root microbiome, as it facilitates colonization by beneficial root microbiota.


Assuntos
Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Concentração de Íons de Hidrogênio , Microbiota/genética , Microbiota/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Pseudomonas/patogenicidade , Rizosfera
16.
Front Microbiol ; 10: 1631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379783

RESUMO

Plants roots host myriads of microbes, some of which enhance the defense potential of plants by activating a broad-spectrum immune response in leaves, known as induced systemic resistance (ISR). Nevertheless, establishment of this mutualistic interaction requires active suppression of local root immune responses to allow successful colonization. To facilitate host colonization, phytopathogenic bacteria secrete immune-suppressive effectors into host cells via the type III secretion system (T3SS). Previously, we searched the genomes of the ISR-inducing rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 for the presence of a T3SS and identified the components for a T3SS in the genomes of WCS417 and WCS374. By performing a phylogenetic and gene cluster alignment analysis we show that the T3SS of WCS417 and WCS374 are grouped in a clade that is enriched for beneficial rhizobacteria. We also found sequences of putative novel effectors in their genomes, which may facilitate future research on the role of T3SS effectors in plant-beneficial microbe interactions in the rhizosphere.

17.
Plant Cell Environ ; 42(10): 2860-2870, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31353481

RESUMO

Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe-associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root-invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free-living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root-invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth-defense tradeoffs triggered by the MAMP-rich rhizosphere environment.


Assuntos
Microbiota/fisiologia , Imunidade Vegetal/fisiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Evasão da Resposta Imune , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Simbiose
18.
Microbiome ; 6(1): 156, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208962

RESUMO

BACKGROUND: Plants are capable of building up beneficial rhizosphere communities as is evidenced by disease-suppressive soils. However, it is not known how and why soil bacterial communities are impacted by plant exposure to foliar pathogens and if such responses might improve plant performance in the presence of the pathogen. Here, we conditioned soil by growing multiple generations (five) of Arabidopsis thaliana inoculated aboveground with Pseudomonas syringae pv tomato (Pst) in the same soil. We then examined rhizosphere communities and plant performance in a subsequent generation (sixth) grown in pathogen-conditioned versus control-conditioned soil. Moreover, we assessed the role of altered root exudation profiles in shaping the root microbiome of infected plants. RESULTS: Plants grown in conditioned soil showed increased levels of jasmonic acid and improved disease resistance. Illumina Miseq 16S rRNA gene tag sequencing revealed that both rhizosphere and bulk soil bacterial communities were altered by Pst infection. Infected plants exhibited significantly higher exudation of amino acids, nucleotides, and long-chain organic acids (LCOAs) (C > 6) and lower exudation levels for sugars, alcohols, and short-chain organic acids (SCOAs) (C ≤ 6). Interestingly, addition of exogenous amino acids and LCOA also elicited a disease-suppressive response. CONCLUSION: Collectively, our data suggest that plants can recruit beneficial rhizosphere communities via modification of plant exudation patterns in response to exposure to aboveground pathogens to the benefit of subsequent plant generations.


Assuntos
Arabidopsis/microbiologia , Doenças das Plantas/parasitologia , Exsudatos de Plantas/química , Raízes de Plantas/microbiologia , Pseudomonas syringae/fisiologia , Arabidopsis/química , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Interações Hospedeiro-Patógeno , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Microbiologia do Solo
19.
Proc Natl Acad Sci U S A ; 115(22): E5213-E5222, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29686086

RESUMO

Plant roots nurture a tremendous diversity of microbes via exudation of photosynthetically fixed carbon sources. In turn, probiotic members of the root microbiome promote plant growth and protect the host plant against pathogens and pests. In the Arabidopsis thaliana-Pseudomonas simiae WCS417 model system the root-specific transcription factor MYB72 and the MYB72-controlled ß-glucosidase BGLU42 emerged as important regulators of beneficial rhizobacteria-induced systemic resistance (ISR) and iron-uptake responses. MYB72 regulates the biosynthesis of iron-mobilizing fluorescent phenolic compounds, after which BGLU42 activity is required for their excretion into the rhizosphere. Metabolite fingerprinting revealed the antimicrobial coumarin scopoletin as a dominant metabolite that is produced in the roots and excreted into the rhizosphere in a MYB72- and BGLU42-dependent manner. Shotgun-metagenome sequencing of root-associated microbiota of Col-0, myb72, and the scopoletin biosynthesis mutant f6'h1 showed that scopoletin selectively impacts the assembly of the microbial community in the rhizosphere. We show that scopoletin selectively inhibits the soil-borne fungal pathogens Fusarium oxysporum and Verticillium dahliae, while the growth-promoting and ISR-inducing rhizobacteria P. simiae WCS417 and Pseudomonas capeferrum WCS358 are highly tolerant of the antimicrobial effect of scopoletin. Collectively, our results demonstrate a role for coumarins in microbiome assembly and point to a scenario in which plants and probiotic rhizobacteria join forces to trigger MYB72/BGLU42-dependent scopolin production and scopoletin excretion, resulting in improved niche establishment for the microbial partner and growth and immunity benefits for the host plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Microbiota/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Escopoletina/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fusarium/metabolismo , Ferro/metabolismo , Metaboloma , Pseudomonas/metabolismo , Rizosfera , Verticillium/metabolismo
20.
ISME J ; 12(6): 1496-1507, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29520025

RESUMO

Disease suppressive soils typically develop after a disease outbreak due to the subsequent assembly of protective microbiota in the rhizosphere. The role of the plant immune system in the assemblage of a protective rhizosphere microbiome is largely unknown. In this study, we demonstrate that Arabidopsis thaliana specifically promotes three bacterial species in the rhizosphere upon foliar defense activation by the downy mildew pathogen Hyaloperonospora arabidopsidis. The promoted bacteria were isolated and found to interact synergistically in biofilm formation in vitro. Although separately these bacteria did not affect the plant significantly, together they induced systemic resistance against downy mildew and promoted growth of the plant. Moreover, we show that the soil-mediated legacy of a primary population of downy mildew infected plants confers enhanced protection against this pathogen in a second population of plants growing in the same soil. Together our results indicate that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes, therewith potentially maximizing the chance of survival of their offspring that will grow in the same soil.


Assuntos
Arabidopsis/microbiologia , Microbiota , Peronospora/fisiologia , Doenças das Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Proteínas de Arabidopsis , Bactérias , Biofilmes , Oomicetos , Rifampina , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA