Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Eat Disord ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456603

RESUMO

OBJECTIVE: Test the efficacy of the selective orexin 1 receptor (OX1R) antagonist (SO1RA) nivasorexant in an animal model of binge-eating disorder (BED) and study its dose-response relationship considering free brain concentrations and calculated OX1R occupancy. Compare nivasorexant's profile to that of other, structurally diverse SO1RAs. Gain understanding of potential changes in orexin-A (OXA) neuropeptide and deltaFosB (ΔFosB) protein expression possibly underlying the development of the binge-eating phenotype in the rat model used. METHOD: Binge-like eating of highly palatable food (HPF) in rats was induced through priming by intermittent, repeated periods of dieting and access to HPF, followed by an additional challenge with acute stress. Effects of nivasorexant were compared to the SO1RAs ACT-335827 and IDOR-1104-2408. OXA expression in neurons and neuronal fibers as well as ΔFosB and OXA-ΔFosB co-expression was studied in relevant brain regions using immuno- or immunofluorescent histochemistry. RESULTS: All SO1RAs dose-dependently reduced binge-like eating with effect sizes comparable to the positive control topiramate, at unbound drug concentrations selectively blocking brain OX1Rs. Nivasorexant's efficacy was maintained upon chronic dosing and under conditions involving more frequent stress exposure. Priming for binge-like eating or nivasorexant treatment resulted in only minor changes in OXA or ΔFosB expression in few brain areas. DISCUSSION: Selective OX1R blockade reduced binge-like eating in rats. Neither ΔFosB nor OXA expression proved to be a useful classifier for their binge-eating phenotype. The current results formed the basis for a clinical phase II trial in BED, in which nivasorexant was unfortunately not efficacious compared with placebo. PUBLIC SIGNIFICANCE: Nivasorexant is a new investigational drug for the treatment of binge-eating disorder (BED). It underwent clinical testing in a phase II proof of concept trial in humans but was not efficacious compared with placebo. The current manuscript investigated the drug's efficacy in reducing binge-like eating behavior of a highly palatable sweet and fat diet in a rat model of BED, which initially laid the foundation for the clinical trial.

2.
J Psychopharmacol ; 38(3): 305-308, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38327032

RESUMO

In rodents, orexin neuropeptides regulate motivation and reward-seeking via orexin 1 receptor (OX1R) signaling in the mesolimbic dopaminergic system. This role is clearly established for rewards inherent to drugs of abuse but less so for natural rewards. Reported effects of the selective OX1R antagonist (SO1RA) SB-334867 on motivation for palatable food are ambiguous. In our experimental conditions neither SB-334867, nor two additional, structurally different SO1RAs, ACT-335827 and the clinical development candidate nivasorexant, affected effort-based responding for sucrose in rats. The positive control lisdexamfetamine, approved for psychiatric disorders associated with altered reward sensitivity such as binge eating disorder, increased effort-based responding.


Assuntos
Benzoxazóis , Naftiridinas , Recompensa , Sacarose , Ureia/análogos & derivados , Humanos , Ratos , Animais , Orexinas/farmacologia , Receptores de Orexina , Sacarose/farmacologia , Condicionamento Operante
3.
Eur J Neurosci ; 59(5): 996-1015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326849

RESUMO

Basal amygdala (BA) neurons projecting to nucleus accumbens (NAc) core/shell are primarily glutamatergic and are integral to the circuitry of emotional processing. Several recent mouse studies have addressed whether neurons in this population(s) respond to reward, aversion or both emotional valences. The focus has been on processing of physical emotional stimuli, and here, we extend this to salient social stimuli. In male mice, an iterative study was conducted into engagement of BA-NAc neurons in response to estrous female (social reward, SR) and/or aggressive-dominant male (social aversion, SA). In BL/6J mice, SR and SA activated c-Fos expression in a high and similar number/density of BA-NAc neurons in the anteroposterior intermediate BA (int-BA), whereas activation was predominantly by SA in posterior (post-)BA. In Fos-TRAP2 mice, compared with SR-SR or SA-SA controls, exposure to successive presentation of SR-SA or SA-SR, followed by assessment of tdTomato reporter and/or c-Fos expression, demonstrated that many int-BA-NAc neurons were activated by only one of SR and SA; these SR/SA monovalent neurons were similar in number and present in both magnocellular and parvocellular int-BA subregions. In freely moving BL/6J mice exposed to SR, bulk GCaMP6 fibre photometry provided confirmatory in vivo evidence for engagement of int-BA-NAc neurons during social and sexual interactions. Therefore, populations of BA-NAc glutamate neurons are engaged by salient rewarding and aversive social stimuli in a topographic and valence-specific manner; this novel evidence is important to the overall understanding of the roles of this pathway in the circuitry of socio-emotional processing.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Accumbens , Proteína Vermelha Fluorescente , Camundongos , Masculino , Feminino , Animais , Núcleo Accumbens/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Recompensa
4.
Commun Biol ; 6(1): 422, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061616

RESUMO

Reduced reward interest/learning and reward-to-effort valuation are distinct, common symptoms in neuropsychiatric disorders for which chronic stress is a major aetiological factor. Glutamate neurons in basal amygdala (BA) project to various regions including nucleus accumbens (NAc). The BA-NAc neural pathway is activated by reward and aversion, with many neurons being monovalent. In adult male mice, chronic social stress (CSS) leads to reduced discriminative reward learning (DRL) associated with decreased BA-NAc activity, and to reduced reward-to-effort valuation (REV) associated, in contrast, with increased BA-NAc activity. Chronic tetanus toxin BA-NAc inhibition replicates the CSS-DRL effect and causes a mild REV reduction, whilst chronic DREADDs BA-NAc activation replicates the CSS effect on REV without affecting DRL. This study provides evidence that stress disruption of reward processing involves the BA-NAc neural pathway; the bi-directional effects implicate opposite activity changes in reward (learning) neurons and aversion (effort) neurons in the BA-NAc pathway following chronic stress.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Accumbens , Camundongos , Masculino , Animais , Tonsila do Cerebelo/fisiologia , Neurônios/fisiologia , Recompensa
5.
Front Psychiatry ; 14: 1054163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896346

RESUMO

Introduction: People with dementia (PwD) often present with neuropsychiatric symptoms (NPS). NPS are of substantial burden to the patients, and current treatment options are unsatisfactory. Investigators searching for novel medications need animal models that present disease-relevant phenotypes and can be used for drug screening. The Senescence Accelerated Mouse-Prone 8 (SAMP8) strain shows an accelerated aging phenotype associated with neurodegeneration and cognitive decline. Its behavioural phenotype in relation to NPS has not yet been thoroughly investigated. Physical and verbal aggression in reaction to the external environment (e.g., interaction with the caregiver) is one of the most prevalent and debilitating NPS occurring in PwD. Reactive aggression can be studied in male mice using the Resident-Intruder (R-I) test. SAMP8 mice are known to be more aggressive than the Senescence Accelerated Mouse-Resistant 1 (SAMR1) control strain at specific ages, but the development of the aggressive phenotype over time, is still unknown. Methods: In our study, we performed a longitudinal, within-subject, assessment of aggressive behaviour of male SAMP8 and SAMR1 mice at 4, 5, 6 and 7 months of age. Aggressive behaviour from video recordings of the R-I sessions was analysed using an in-house developed behaviour recognition software. Results: SAMP8 mice were more aggressive relative to SAMR1 mice starting at 5 months of age, and the phenotype was still present at 7 months of age. Treatment with risperidone (an antipsychotic frequently used to treat agitation in clinical practice) reduced aggression in both strains. In a three-chamber social interaction test, SAMP8 mice also interacted more fervently with male mice than SAMR1, possibly because of their aggression-seeking phenotype. They did not show any social withdrawal. Discussion: Our data support the notion that SAMP8 mice might be a useful preclinical tool to identify novel treatment options for CNS disorders associated with raised levels of reactive aggression such as dementia.

6.
Front Psychiatry ; 13: 1052233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506416

RESUMO

Neuropsychiatric symptoms (NPS) affect people with dementia (PwD) almost universally across all stages of the disease, and regardless of its exact etiology. NPS lead to disability and reduced quality of life of PwD and their caregivers. NPS include hyperactivity (agitation and irritability), affective problems (anxiety and depression), psychosis (delusions and hallucinations), apathy, and sleep disturbances. Preclinical studies have shown that the orexin neuropeptide system modulates arousal and a wide range of behaviors via a network of axons projecting from the hypothalamus throughout almost the entire brain to multiple, even distant, regions. Orexin neurons integrate different types of incoming information (e.g., metabolic, circadian, sensory, emotional) and convert them into the required behavioral output coupled to the necessary arousal status. Here we present an overview of the behavioral domains influenced by the orexin system that may be relevant for the expression of some critical NPS in PwD. We also hypothesize on the potential effects of pharmacological interference with the orexin system in the context of NPS in PwD.

7.
Physiol Behav ; 250: 113787, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35346733

RESUMO

Agitation, which comprises verbal or physical aggression and hyperactivity, is one of the most frequent neuropsychiatric symptoms observed in patients with Alzheimer's disease (AD). It often co-occurs with dysregulated circadian rhythms. Current medications are associated with serious adverse effects, and novel therapeutics are therefore needed. Rodent models can be instrumental to provide a first signal for potential efficacy of novel drug candidates. Longitudinal data assessing the face validity of such models for AD-related agitation are largely missing. We employed telemeterized APPswe mice, a frequently used AD transgenic mouse line overexpressing the human beta-amyloid precursor protein (APP) with the Swedish KM670/671NL mutation, to study the occurrence and progression of changes in reactive aggressive behavior as well as the circadian profile of locomotor activity and body temperature. Analysis was conducted between 5 and 11 months of age, at regular 2-months intervals. The aggressivity of all mice was highest at 5 months and waned with increasing age. APPswe mice were more aggressive than WT at 5 and 7 months of age. The locomotor activity and body temperature of WT mice declined with increasing age, while that of APPswe mice remained rather constant. This genotype difference was solely evident during the active, dark phase. APPswe mice did not display a phase shift of their circadian rhythms. We conclude that the APPswe mouse line can recapitulate some of the behavioral disturbances observed in AD, including an agitation-relevant phenotype characterized by active phase hyperactivity and aggressivity. It does not recapitulate the nighttime disturbances (also characterized by hyperactivity) and the shift of circadian rhythms observed in AD patients. Therefore, the APPswe strain could be used at specific ages to model a subset of agitation-relevant behavioral problems and to test the modulatory effects of drugs.


Assuntos
Doença de Alzheimer , Agressão , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
8.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162951

RESUMO

Immune-inflammatory activation impacts extracellular vesicles (EVs), including their miRNA cargo. There is evidence for changes in the EV miRNome in inflammation-associated neuropsychiatric disorders. This mouse study investigated: (1) effects of systemic lipopolysaccharide (LPS) and chronic social stress (CSS) on plasma EV miRNome; and (2) physiological, transcriptional, and behavioural effects of peripheral or central delivered LPS-activated EVs in recipient mice. LPS or CSS effects on the plasma EV miRNome were assessed by using microRNA sequencing. Recipient mice received plasma EVs isolated from LPS-treated or SAL-treated donor mice or vehicle only, either intravenously or into the nucleus accumbens (NAc), on three consecutive days. Bodyweight, spleen or NAc transcriptome and reward (sucrose) motivation were assessed. LPS and CSS increased the expression of 122 and decreased expression of 20 plasma EV miRNAs, respectively. Peripheral LPS-EVs reduced bodyweight, and both LPS-EVs and SAL-EVs increased spleen expression of immune-relevant genes. NAc-infused LPS-EVs increased the expression of 10 immune-inflammatory genes. Whereas motivation increased similarly across test days in all groups, the effect of test days was more pronounced in mice that received peripheral or central LPS-EVs compared with other groups. This study provides causal evidence that increased EV levels impact physiological and behavioural processes and are of potential relevance to neuropsychiatric disorders.


Assuntos
Vesículas Extracelulares/genética , Perfilação da Expressão Gênica/métodos , Lipopolissacarídeos/efeitos adversos , MicroRNAs/genética , Estresse Psicológico/genética , Animais , Vesículas Extracelulares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Projetos Piloto , Análise de Sequência de RNA , Baço/efeitos dos fármacos , Baço/metabolismo , Estresse Psicológico/psicologia
9.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163583

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Its first clinical presentation (clinically isolated syndrome, CIS) is often followed by the development of relapsing-remitting MS (RRMS). The periphery-to-CNS transmission of inflammatory molecules is a major pathophysiological pathway in MS. This could include signalling via extracellular vesicle (EV) microRNAs (miRNAs). In this study, we investigated the serum EV miRNome in CIS and RRMS patients and matched controls, with the aims to identify MS stage-specific differentially expressed miRNAs and investigate their biomarker potential and pathophysiological relevance. miRNA sequencing was conducted on serum EVs from CIS-remission, RRMS-relapse, and viral inflammatory CNS disorder patients, as well as from healthy and hospitalized controls. Differential expression analysis was conducted, followed by predictive power and target-pathway analysis. A moderate number of dysregulated serum EV miRNAs were identified in CIS-remission and RRMS-relapse patients, especially relative to healthy controls. Some of these miRNAs were also differentially expressed between the two MS stages and had biomarker potential for patient-control and CIS-RRMS separations. For the mRNA targets of the RRMS-relapse-specific EV miRNAs, biological processes inherent to MS pathophysiology were identified using in silico analysis. Study findings demonstrate that specific serum EV miRNAs have MS stage-specific biomarker potential and contribute to the identification of potential targets for novel, efficacious therapies.


Assuntos
Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Psychopharmacology (Berl) ; 238(10): 2693-2708, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34415378

RESUMO

Dual orexin receptor antagonists (DORAs) represent a novel type of sleep medication that provide an alternative to the traditionally used positive allosteric gamma-aminobutyric acid (GABA)-A receptor modulators. Daridorexant is a new DORA that exhibited in phase 3 trials in insomnia not only a beneficial effect on sleep variables, measured objectively and assessed subjectively, but also an improvement in daytime functioning. Daridorexant was discovered through a tailored research program aimed at identifying an optimized sleep-promoting molecule with pharmacokinetic properties appropriate for covering the whole night while avoiding next-morning residual activity at efficacious doses. By specific binding to both orexin receptors, daridorexant inhibits the actions of the wake-promoting orexin (also called hypocretin) neuropeptides. This mechanism avoids a more widespread inhibition of neuronal pathways and associated side effects that are intrinsic to positive allosteric GABA-A receptor modulators. Here, we review the general pharmacology of daridorexant, based on nonclinical pharmacology studies of daridorexant, unpublished or already described, or based on work with other DORAs. Some unique features of daridorexant will be highlighted, such as the promotion of natural and surmountable sleep, the preservation of memory and cognition, the absence of tolerance development or risk of physical dependence, and how it can benefit daytime functioning.


Assuntos
Antagonistas dos Receptores de Orexina , Distúrbios do Início e da Manutenção do Sono , Humanos , Imidazóis , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina , Pirrolidinas , Sono , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico
11.
Neuroscience ; 405: 148-157, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660443

RESUMO

Extracellular vesicles, including exosomes and microvesicles, are small, nano-to-micrometer vesicles that are released from cells. While initially observed in immune cells and reticulocytes as vesicles meant to remove archaic proteins, now they have been observed in almost all cell types of multicellular organisms. Growing evidence indicates that extracellular vesicles, containing lipids, proteins and RNAs, represent an efficient way to transfer functional cargoes from one cell to another. In the central nervous system, the extensive cross-talk ongoing between neurons and glia, including microglia, the immune cells of the brain, takes advantage of secreted vesicles, which mediate intercellular communication over long range distance. Recent literature supports a critical role for extracellular vesicles in mediating complex and coordinated communication among neurons, astrocytes and microglia, both in the healthy and in the diseased brain. In this review, we focus on the biogenesis and function of microglia-related extracellular vesicles and focus on their putative role in Alzheimer's disease pathology.


Assuntos
Comunicação Celular/fisiologia , Vesículas Extracelulares/fisiologia , Microglia/citologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/citologia , Sistema Nervoso Central/citologia , Humanos , Doenças Neurodegenerativas/patologia
12.
Front Behav Neurosci ; 12: 134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057529

RESUMO

Pathology of reward processing is a major clinical feature of stress-related neuropsychiatric disorders including depression. Several dimensions of reward processing can be impacted, including reward valuation/salience, learning, expectancy and effort valuation. To establish the causal relationships between stress, brain changes, and reward processing pathologies, valid animal models are essential. Here, we present mouse experiments investigating behavioral effects of chronic social stress (CSS) in association learning tests of gustatory reward salience and effort valuation. The reward salience test (RST) comprised Pavlovian pairing of a tone with gustatory reward. The effort valuation test (EVT) comprised operant responding for gustatory reinforcement on a progressive ratio schedule (PRS). All testing was conducted with mice at 100% baseline body weight (BBW). In one experiment, mice underwent 15-day CSS or control handling (CON) and testing was conducted using sucrose pellets. In the RST on days 16-17, CSS mice made fewer feeder responses and had a longer tone response latency, than CON mice. In a shallow EVT on days 19-20, CSS mice attained a lower final ratio than CON mice. In a second CSS experiment, mice underwent CSS or CON and testing was conducted with chocolate pellets and in the presence of standard diet (low effort/low reward). In the RST on days 16-18, CSS mice made fewer feeder responses and had a longer tone response latency, than CON mice. In a steep EVT on days 19-20, CSS and CON mice attained less pellets than in the RST, and CSS mice attained a lower final ratio than CON mice. At day 21, blood levels of glucose and the satiety adipokine leptin were similar in CSS and CON mice. Therefore, CSS leads to consistent reductions in reward salience and effort valuation in tests based on association learning. These reward pathology models are being applied to identify the underlying neurobiology and putative molecular targets for therapeutic pharmacology.

13.
Neurobiol Stress ; 8: 42-56, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29888303

RESUMO

Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets.

14.
Brain Behav Immun ; 58: 310-326, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27515532

RESUMO

Tumor necrosis factor alpha (TNF) is increased in depression and clinical-trial evidence indicates that blocking peripheral TNF has some antidepressant efficacy. In rodents, peripheral or intracerebroventricular TNF results in sickness e.g. reduced body weight, altered emotional behavior and impaired memory. However, the underlying pathways and responsible brain regions are poorly understood. The aim of this mouse study was to increase understanding by comparing the effects of sustained increases in TNF in the circulation, in brain regions impacted by increased circulating TNF, or specific brain regions. Increased peripheral TNF achieved by repeated daily injection (IP-TNF) or osmotic pump resulted in decreased body weight, decreased saccharin (reward) consumption, and increased memory of an aversive conditioned stimulus. These effects co-occurred with increased plasma interleukin-6 and increased IP-derived TNF in brain peri-ventricular regions. An adenovirus-associated viral TNF vector (AAV-TNF) was constructed, brain injection of which resulted in dose-dependent, sustained and region-specific TNF expression, and was without effect on blood cytokine levels. Lateral ventricle AAV-TNF yielded increased TNF in the same brain regions as IP-TNF. In contrast to IP-TNF it was without effect on body weight, saccharin consumption and fear memory, although it did increase anxiety. Hippocampal AAV-TNF led to decreased body weight. It increased conditioning to but not subsequent memory of an aversive context, suggesting impaired consolidation; it also increased anxiety. Amygdala AAV-TNF was without effect on body weight and aversive stimulus learning-memory, but reduced saccharin consumption and increased anxiety. This study adds significantly to the evidence that both peripheral and brain region-specific increases in TNF lead to both sickness and depression- and anxiety disorder-relevant behavior and do so via different pathways. It thereby highlights the complexity in terms of indirect and direct pathways via which increased TNF can act and which need to be taken into account when considering it as a therapeutic target.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/psicologia , Encefalite/fisiopatologia , Encefalite/psicologia , Comportamento de Doença , Memória , Fator de Necrose Tumoral alfa/fisiologia , Animais , Ansiedade , Comportamento Animal , Condicionamento Clássico , Depressão , Medo , Masculino , Camundongos Endogâmicos C57BL , Necrose , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
15.
Eur Neuropsychopharmacol ; 26(9): 1448-1464, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422761

RESUMO

A major domain of depression is decreased motivation for reward. Translational automated tests can be applied in humans and animals to study operant reward behaviour, aetio-pathophysiology underlying deficits therein, and effects of antidepressant treatment. Three inter-related experiments were conducted to investigate depression-relevant effects of chronic psychosocial stress on operant behaviour in mice. (A) Non-manipulated mice were trained on a complex reversal learning (CRL) test with sucrose reinforcement; relative to vehicle (VEH), acute antidepressant agomelatine (AGO, 25mg/kg p.o.) increased reversals. (B) Mice underwent chronic social defeat (CSD) or control handling (CON) on days 1-15, and were administered AGO or VEH on days 10-22. In a progressive ratio schedule motivation test for sucrose on day 15, CSD mice made fewer responses; AGO tended to reverse this effect. In a CRL test on day 22, CSD mice completed fewer reversals; AGO tended to increase reversals in CSD mice associated with an adaptive increase in perseveration. (C) Mice with continuous operant access to water and saccharin solution in the home cage were exposed to CSD or CON; CSD mice made fewer responses for saccharin and water and drank less saccharin in the active period, and drank more water in the inactive period. In a separate CSD cohort, repeated AGO was without effect on these home cage operant and consummatory changes. Overall, this study demonstrates that psychosocial stress in mice leads to depression-relevant decreases in motivation and cognition in operant reward tests; partial reversal of these deficits by AGO provides evidence for predictive validity.


Assuntos
Acetamidas/farmacologia , Antidepressivos/farmacologia , Condicionamento Operante/efeitos dos fármacos , Motivação/efeitos dos fármacos , Recompensa , Estresse Psicológico/tratamento farmacológico , Acetamidas/farmacocinética , Animais , Antidepressivos/farmacocinética , Automação Laboratorial , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Sacarose Alimentar , Dominação-Subordinação , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Indóis/farmacologia , Masculino , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais , Piridinas/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Reversão de Aprendizagem/efeitos dos fármacos , Sacarina , Antagonistas da Serotonina/farmacologia
16.
Neuropharmacology ; 109: 306-319, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27036890

RESUMO

Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies.


Assuntos
Aprendizagem da Esquiva/fisiologia , Dopamina/metabolismo , Motivação/fisiologia , Núcleo Accumbens/metabolismo , Recompensa , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/fisiologia , Medo/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Oxidopamina/toxicidade , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Psicopatologia
17.
Brain Behav Immun ; 54: 59-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26724575

RESUMO

Psychosocial stress is a major risk factor for mood and anxiety disorders, in which excessive reactivity to aversive events/stimuli is a major psychopathology. In terms of pathophysiology, immune-inflammation is an important candidate, including high blood and brain levels of metabolites belonging to the kynurenine pathway. Animal models are needed to study causality between psychosocial stress, immune-inflammation and hyper-reactivity to aversive stimuli. The present mouse study investigated effects of psychosocial stress as chronic social defeat (CSD) versus control-handling (CON) on: Pavlovian tone-shock fear conditioning, activation of the kynurenine pathway, and efficacy of a specific inhibitor (IDOInh) of the tryptophan-kynurenine catabolising enzyme indoleamine 2,3-dioxygenase (IDO1), in reversing CSD effects on the kynurenine pathway and fear. CSD led to excessive fear learning and memory, whilst repeated oral escitalopram (antidepressant and anxiolytic) reversed excessive fear memory, indicating predictive validity of the model. CSD led to higher blood levels of TNF-α, IFN-γ, kynurenine (KYN), 3-hydroxykynurenine (3-HK) and kynurenic acid, and higher KYN and 3-HK in amygdala and hippocampus. CSD was without effect on IDO1 gene or protein expression in spleen, ileum and liver, whilst increasing liver TDO2 gene expression. Nonetheless, oral IDOInh reduced blood and brain levels of KYN and 3-HK in CSD mice to CON levels, and we therefore infer that CSD increases IDO1 activity by increasing its post-translational activation. Furthermore, repeated oral IDOInh reversed excessive fear memory in CSD mice to CON levels. IDOInh reversal of CSD-induced hyper-activity in the kynurenine pathway and fear system contributes significantly to the evidence for a causal pathway between psychosocial stress, immune-inflammation and the excessive fearfulness that is a major psychopathology in stress-related neuropsychiatric disorders.


Assuntos
Encéfalo/metabolismo , Citalopram/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Cinurenina/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Medo/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ácido Cinurênico/metabolismo , Cinurenina/análogos & derivados , Cinurenina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Estresse Psicológico/enzimologia , Estresse Psicológico/psicologia , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
J Biol Chem ; 285(40): 30814-24, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20547764

RESUMO

Zinc finger protein 423 encodes a 30 Zn-finger transcription factor involved in cerebellar and olfactory development. ZFP423 is a known interactor of SMAD1-SMAD4 and of Collier/Olf-1/EBF proteins, and acts as a modifier of retinoic acid-induced differentiation. In the present article, we show that ZFP423 interacts with the Notch1 intracellular domain in mammalian cell lines and in Xenopus neurula embryos, to activate the expression of the Notch1 target Hes5/ESR1. This effect is antagonized by EBF transcription factors, both in cultured cells and in Xenopus embryos, and amplified in vitro by BMP4, suggesting that ZFP423 acts to integrate BMP and Notch signaling, selectively promoting their convergence onto the Hes5 gene promoter.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptor Notch1/metabolismo , Proteínas Repressoras/biossíntese , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Morfogenética Óssea 4/genética , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Humanos , Camundongos , Receptor Notch1/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Regulação para Cima/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA