Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(10): e113519, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37013908

RESUMO

Recruitment of RNA polymerase II (Pol II) to promoters is essential for transcription. Despite conflicting evidence, the Pol II preinitiation complex (PIC) is often thought to have a uniform composition and to assemble at all promoters via an identical mechanism. Here, using Drosophila melanogaster S2 cells as a model, we demonstrate that different promoter classes function via distinct PICs. Promoter DNA of developmentally regulated genes readily associates with the canonical Pol II PIC, whereas housekeeping promoters do not, and instead recruit other factors such as DREF. Consistently, TBP and DREF are differentially required by distinct promoter types. TBP and its paralog TRF2 also function at different promoter types in a partially redundant manner. In contrast, TFIIA is required at all promoters, and we identify factors that can recruit and/or stabilize TFIIA at housekeeping promoters and activate transcription. Promoter activation by tethering these factors is sufficient to induce the dispersed transcription initiation patterns characteristic of housekeeping promoters. Thus, different promoter classes utilize distinct mechanisms of transcription initiation, which translate into different focused versus dispersed initiation patterns.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fator de Transcrição TFIIA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas de Drosophila/genética
2.
EMBO J ; 42(3): e112100, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36545802

RESUMO

All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Correpressoras/metabolismo , DNA/metabolismo
3.
Mol Cell ; 82(19): 3598-3612.e7, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36113480

RESUMO

Gene transcription is a highly regulated process in all animals. In Drosophila, two major transcriptional programs, housekeeping and developmental, have promoters with distinct regulatory compatibilities and nucleosome organization. However, it remains unclear how the differences in chromatin structure relate to the distinct regulatory properties and which chromatin remodelers are required for these programs. Using rapid degradation of core remodeler subunits in Drosophila melanogaster S2 cells, we demonstrate that developmental gene transcription requires SWI/SNF-type complexes, primarily to maintain distal enhancer accessibility. In contrast, wild-type-level housekeeping gene transcription requires the Iswi and Ino80 remodelers to maintain nucleosome positioning and phasing at promoters. These differential remodeler dependencies relate to different DNA-sequence-intrinsic nucleosome affinities, which favor a default ON state for housekeeping but a default OFF state for developmental gene transcription. Overall, our results demonstrate how different transcription-regulatory strategies are implemented by DNA sequence, chromatin structure, and remodeler activity.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Zeladoria , Nucleossomos/genética , Nucleossomos/metabolismo
4.
Nature ; 606(7913): 406-413, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650434

RESUMO

All multicellular organisms rely on differential gene transcription regulated by genomic enhancers, which function through cofactors that are recruited by transcription factors1,2. Emerging evidence suggests that not all cofactors are required at all enhancers3-5, yet whether these observations reflect more general principles or distinct types of enhancers remained unknown. Here we categorized human enhancers by their cofactor dependencies and show that these categories provide a framework to understand the sequence and chromatin diversity of enhancers and their roles in different gene-regulatory programmes. We quantified enhancer activities along the entire human genome using STARR-seq6 in HCT116 cells, following the rapid degradation of eight cofactors. This analysis identified different types of enhancers with distinct cofactor requirements, sequences and chromatin properties. Some enhancers were insensitive to the depletion of the core Mediator subunit MED14 or the bromodomain protein BRD4 and regulated distinct transcriptional programmes. In particular, canonical Mediator7 seemed dispensable for P53-responsive enhancers, and MED14-depleted cells induced endogenous P53 target genes. Similarly, BRD4 was not required for the transcription of genes that bear CCAAT boxes and a TATA box (including histone genes and LTR12 retrotransposons) or for the induction of heat-shock genes. This categorization of enhancers through cofactor dependencies reveals distinct enhancer types that can bypass broadly utilized cofactors, which illustrates how alternative ways to activate transcription separate gene expression programmes and provide a conceptual framework to understand enhancer function and regulatory specificity.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA