Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900829

RESUMO

The development and application of functional feed ingredients represents a great opportunity to advance fish growth and health, boost the immune system, and induce physiological benefits beyond those provided by traditional feeds. In the present study, we looked at the feasibility of in vitro methods for screening the qualities of functional feed ingredients using the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of Paramoeba perurans. Five functional feed ingredients (arginine, ß-glucan, vitamin C, and two phytogenic feed additives) were selected to investigate their effects on cell viability and reactive oxygen species production. Three of the selected ingredients (arginine and two phytogenic feed additives) were additionally tested to assess their potential amoebicidal activity. As these functional ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected by complex gill disease. Here, the analyzed parameters included the evaluation of macroscopic and histopathological gill conditions, pathogen detections, and analyses of plasma parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients and provided information about the optimal ingredient concentration ranges, which can be helpful for adjusting the concentrations in future feed diets. Through the culture of P. perurans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclusions in dietary supplements could be a viable way to prevent microbial infections. A three-week period of feeding Protec Gill slowed the disease progression, by reducing the pathogen load and significantly improving gill tissue conditions, as revealed by histological evaluation. The use of diets containing selected functional ingredients may be a feasible strategy for preventing or mitigating the increasingly common gill diseases, particularly in cases of complex gill disease, as documented in this study.


Assuntos
Ração Animal , Doenças dos Peixes , Brânquias , Salmo salar , Animais , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Brânquias/patologia , Brânquias/parasitologia , Brânquias/efeitos dos fármacos , Linhagem Celular , beta-Glucanas/farmacologia , Arginina/farmacologia , Ácido Ascórbico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Suplementos Nutricionais , Amebíase/parasitologia , Sobrevivência Celular/efeitos dos fármacos
2.
Gen Comp Endocrinol ; 348: 114434, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142842

RESUMO

Atlantic salmon (Salmo salar) broodstock recruits are normally fed a specialized diet with a higher content of essential nutrients for a limited time period prior to fasting and transfer to freshwater. Typically, this period lasts for about six months, but may vary among producers. Reduced use of marine ingredients in commercial salmon diets during the last decades has affected the content of essential nutrients, such as n-3 long chained polyunsaturated fatty acids (LC-PUFA), minerals and vitamins. Furthermore, to minimize the risk of losses and implement new breeding achievements faster, breeding companies have shortened the production cycle of broodstock from 4 to 3 years, which may affect the number of fish that are large enough to mature. In the present study, we have extended the broodstock feeding period from 6 to 15 months prior to the freshwater transfer giving a higher content of n-3 LC-PUFA (higher inclusion of marine oils) from February to December (Phase 1), and thereafter a diet with a higher energy content to ensure growth towards the spring and maturation (Phase 2). Four sea cages with approximately 80.000 salmon postsmolt, two sea cages with males and two with females, were given a control diet and an experimental diet. Samples were taken in Phase 1 at start (1.7 kg), mid (3.4 kg) and end Phase 1/start of Phase 2 (8.3 kg), and end of Phase 2 (13.4 kg). The fish were thereafter fasted, and selected fish transferred to landbased freshwater tanks where light and temperature were used to manipulate the spawning time of the fish in two groups (early or late). Due to disease in the facility, measures of egg quality and hatching were only obtained from the early group. During the trial and spawning period, biometrical measurements were recorded, and samples of liver, gonad, fillet and red blood cells (RBC) were collected for fatty acid composition and blood plasma for analysis of lipid and health-related parameters. Samples were also collected for gonadal transcriptomic analysis by microarray and qPCR (end Phase 2) and plasma steroids (end Phase 2, mid maturation and spawning). Males fed the test diet had a larger body size compared to the control group at the end of Phase 2, while no differences were observed between dietary groups for the females. Total mortality in the trial was lower in the test group compared to the control, losses were caused mainly by sea lice treatments, loser fish or cardiomyopathy syndrome (CMS). The dietary LC-PUFA levels in the test diet were reflected in the tissues particularly during Phase 1, but only different in the fillet samples and eggs at the end of Phase 2 and at spawning. Plasma sex steroids content increased at mid maturation and showed lower levels of androgens and estrogens in females fed the test diet compared to the control. At the end of Phase 2, transcriptional analysis showed upregulation of steroidogenic enzymes, although not reflected in changes in plasma steroids in Phase 2, indicating changes to come during maturation. The differences in LC-PUFA content in tissues and plasma steroids did not appear to affect fecundity, sperm quality, egg survival or hatching rate, but the test group had larger eggs compared to the control in the early spawner-group. Prolonged feeding of n-3 LC-PUFA to pre-puberty Atlantic salmon broodstock appears to be important for higher survival in challenging sea cage environments and has an effect on sex steroid production that, together with high energy diet during early maturation, cause the test group to produce larger eggs.


Assuntos
Ácidos Graxos Ômega-3 , Salmo salar , Animais , Feminino , Masculino , Maturidade Sexual , Sêmen , Ácidos Graxos , Dieta/veterinária , Esteroides , Ração Animal/análise
3.
Microorganisms ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38257853

RESUMO

Cardiomyopathy syndrome (CMS) poses a significant threat to farmed Atlantic salmon (Salmo salar), leading to high mortality rates during the seawater phase. Given that controlled experimental challenge trials with PMCV do not reproduce the mortality observed in severe field outbreaks of CMS, field trials on natural CMS outbreaks are warranted. This field study explored the impact of a clinical nutrition intervention, specifically a diet enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on a severe CMS outbreak in a commercial sea farm. CMS was diagnosed in a single sea cage with high mortality rates. Histopathological analysis, RT-qPCR in situ hybridization for virus detection, and fatty acid composition analysis were used to monitor the impact of disease and the inclusion of EPA and DHA in heart tissue. Following the implementation of clinical nutrition, a decline in mortality rates, regression of CMS-associated changes, and a significant reduction in piscine myocarditis virus (PMCV) RNA load were observed within the salmon population. Fatty acid composition analysis of heart samples demonstrated increased levels of EPA and DHA, reinforcing the association between dietary factors, viral load dynamics, and overall fish health. Although further validation is needed in future studies, as field trials may not be sufficient to establish causation, our results indicate that optimizing the EPA + DHA levels may prove beneficial in severe CMS outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA