Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Physiol Rep ; 5(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28899911

RESUMO

Amplitude Spectrum Area (AMSA) values during ventricular fibrillation (VF) correlate with myocardial energy stores and predict defibrillation success. By contrast, end tidal CO2 (ETCO2) values provide a noninvasive assessment of coronary perfusion pressure and myocardial perfusion during cardiopulmonary resuscitation (CPR). Given the importance of the timing of defibrillation shock delivery on clinical outcome, we tested the hypothesis that AMSA and ETCO2 correlate with each other and can be used interchangably to correlate with myocardial perfusion in an animal laboratory preclinical, randomized, prospective investigation. After 6 min of untreated VF, 12 female pigs (32 ± 1 Kg), isoflurane anesthetized pigs received sequentially 3 min periods of standard (S) CPR, S-CPR+ an impedance threshold device (ITD), and then active compression decompression (ACD) + ITD CPR Hemodynamic, AMSA, and ETCO2 measurements were made with each method of CPR The Spearman correlation and Friedman tests were used to compare hemodynamic parameters. ETCO2, AMSA, coronary perfusion pressure, cerebral perfusion pressure were lowest with STD CPR, increased with STD CPR + ITD and highest with ACD CPR + ITD Further analysis demonstrated a positive correlation between AMSA and ETCO2 (r = 0.37, P = 0.025) and between AMSA and key hemodynamic parameters (P < 0.05). This study established a moderate positive correlation between ETCO2 and AMSA These findings provide the physiological basis for developing and testing a novel noninvasive method that utilizes either ETCO2 alone or the combination of ETCO2 and AMSA to predict when defibrillation might be successful.


Assuntos
Dióxido de Carbono/análise , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Hemodinâmica , Fibrilação Ventricular/terapia , Animais , Reanimação Cardiopulmonar/efeitos adversos , Circulação Cerebrovascular , Circulação Coronária , Feminino , Parada Cardíaca/fisiopatologia , Suínos , Volume de Ventilação Pulmonar , Fibrilação Ventricular/fisiopatologia
2.
Resuscitation ; 116: 56-59, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461164

RESUMO

INTRODUCTION: Chest compliance plays a fundamental role in the generation of circulation during cardiopulmonary resuscitation (CPR). To study potential changes in chest compliance over time, anterior posterior (AP) chest height measurements were performed on newly deceased (never frozen) human cadavers during CPR before and after 5min of automated CPR. We tested the hypothesis that after 5min of CPR chest compliance would be significantly increased. METHODS: Static compression (30, 40, and 50kg) and decompression forces (-10, -15kg) were applied with a manual ACD-CPR device (ResQPUMP, ZOLL) before and after 5min of automated CPR. Lateral chest x-rays were obtained with multiple reference markers to assess changes in AP distance. RESULTS: In 9 cadavers, changes (mean±SD) in the AP distance (cm) during the applied forces were 2.1±1.2 for a compression force of 30kg, 2.9±1.3 for 40kg, 4.3±1.0 for 50kg, 1.0±0.8 for a decompression force of -10kg and 1.8±0.6 for -15kg. After 5min of automated CPR, AP excursion distances were significantly greater (p<0.05). AP distance increased to 3.7±1.4 for a compression force of 30kg, 4.9±1.6 for 40kg, 6.3±1.9 for 50kg, 2.3±0.9 for -10kg of lift and 2.7±1.1 for -15kg of lift. CONCLUSIONS: These data demonstrate chest compliance increases significantly over time as demonstrated by the significant increase in the measured AP distance after 5min of CPR. These findings suggest that adjustments in compression and decompression forces may be needed to optimize CPR over time.


Assuntos
Reanimação Cardiopulmonar/instrumentação , Descompressão , Complacência Pulmonar/fisiologia , Pressão , Cadáver , Feminino , Parada Cardíaca/terapia , Humanos , Masculino , Parede Torácica/fisiopatologia
4.
Mol Genet Metab ; 82(4): 266-72, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15308124

RESUMO

Long-chain acyl-CoA dehydrogenase (LCAD) deficiency has not been found in human patients. There has been an LCAD deficient (LCAD-/-) mouse model developed via gene targeting strategies that has gestational loss as a part of its phenotype. We tested the hypothesis that LCAD deficiency disrupts normal embryonic development and explains at least in part the gestational loss in the mouse and may suggest a mechanism to explain the lack of any human patients with this inherited enzyme deficiency. We cultured and evaluated embryos with three different genotypes: LCAD+/+, LCAD+/-, and LCAD-/-. We found a significantly increased rate of death (P<0.012) in LCAD-/- embryos at the morula-to-blastocyst conversion indicating a deficient ability to complete the development of a blastocoele and formation of a blastocyst. Furthermore, we hypothesized that we could rescue LCAD-/- embryos in culture by supplying excess fatty acids of chain-lengths that could be readily oxidized by them despite their inherited enzyme deficiency. We were unable, however, to demonstrate any rescue by supplementing the culture medium with fatty acids of a wide-range of chain-lengths. Therefore, overall we demonstrated a severely deficient capacity for LCAD-/- embryos to develop past the morula stage with intermediate rates of development found in the LCAD+/- embryos as compared to the LCAD+/+ embryos. Furthermore, we were unable to rescue the LCAD-/- embryos with any fatty acid supplementation.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/fisiologia , Blastocisto/enzimologia , Desenvolvimento Embrionário , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Feminino , Camundongos , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA