Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397160

RESUMO

The European sardine (Sardina pilchardus, Walbaum 1792) is indisputably a commercially important species. Previous studies using uneven sampling or a limited number of makers have presented sometimes conflicting evidence of the genetic structure of S. pilchardus populations. Here, we show that whole genome data from 108 individuals from 16 sampling areas across 5000 km of the species' distribution range (from the Eastern Mediterranean to the archipelago of Azores) support at least three genetic clusters. One includes individuals from Azores and Madeira, with evidence of substructure separating these two archipelagos in the Atlantic. Another cluster broadly corresponds to the center of the distribution, including the sampling sites around Iberia, separated by the Almeria-Oran front from the third cluster that includes all of the Mediterranean samples, except those from the Alboran Sea. Individuals from the Canary Islands appear to belong to the Mediterranean cluster. This suggests at least two important geographical barriers to gene flow, even though these do not seem complete, with many individuals from around Iberia and the Mediterranean showing some patterns compatible with admixture with other genetic clusters. Genomic regions corresponding to the top outliers of genetic differentiation are located in areas of low recombination indicative that genetic architecture also has a role in shaping population structure. These regions include genes related to otolith formation, a calcium carbonate structure in the inner ear previously used to distinguish S. pilchardus populations. Our results provide a baseline for further characterization of physical and genetic barriers that divide European sardine populations, and information for transnational stock management of this highly exploited species towards sustainable fisheries.


Assuntos
Peixes , Metagenômica , Humanos , Animais , Peixes/genética , Portugal , Genoma/genética , Espanha
2.
PLoS Genet ; 20(2): e1011129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346089

RESUMO

Lewontin's paradox, the observation that levels of genetic diversity (π) do not scale linearly with census population size (Nc) variation, is an evolutionary conundrum. The most extreme mismatches between π and Nc are found for highly abundant marine invertebrates. Yet, the influences of new mutations on π relative to extrinsic processes such as Nc fluctuations are unknown. Here, we provide the first germline mutation rate (µ) estimate for a marine invertebrate in corallivorous crown-of-thorns sea stars (Acanthaster cf. solaris). We use high-coverage whole-genome sequencing of 14 parent-offspring trios alongside empirical estimates of Nc in Australia's Great Barrier Reef to jointly examine the determinants of π in populations undergoing extreme Nc fluctuations. The A. cf. solaris mean µ was 9.13 x 10-09 mutations per-site per-generation (95% CI: 6.51 x 10-09 to 1.18 x 10-08), exceeding estimates for other invertebrates and showing greater concordance with vertebrate mutation rates. Lower-than-expected Ne (~70,000-180,000) and low Ne/Nc values (0.0047-0.048) indicated weak influences of population outbreaks on long-term π. Our findings are consistent with elevated µ evolving in response to reduced Ne and generation time length, with important implications for explaining high mutational loads and the determinants of genetic diversity in marine invertebrate taxa.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Taxa de Mutação , Mutação em Linhagem Germinativa/genética , Densidade Demográfica , Estrelas-do-Mar/genética
3.
Nature ; 615(7951): 285-291, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859541

RESUMO

The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.


Assuntos
Evolução Molecular , Mutação em Linhagem Germinativa , Taxa de Mutação , Vertebrados , Animais , Feminino , Masculino , Aves/genética , Peixes/genética , Mutação em Linhagem Germinativa/genética , Mamíferos/genética , Répteis/genética , Vertebrados/genética
4.
BMC Biol ; 20(1): 245, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36344967

RESUMO

BACKGROUND: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic. RESULTS: We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse. CONCLUSIONS: Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Animais , Haplótipos , Diabetes Mellitus Tipo 2/genética , Murinae , Genoma , Genômica
5.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018888

RESUMO

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon,' a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.


Assuntos
Técnicas Genéticas , Mutação em Linhagem Germinativa , Macaca mulatta/genética , Taxa de Mutação , Animais , Técnicas Genéticas/instrumentação , Células Germinativas , Laboratórios , Linhagem , Padrões de Referência
6.
Gigascience ; 10(10)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34673928

RESUMO

The lack of consensus methods to estimate germline mutation rates from pedigrees has led to substantial differences in computational pipelines in the published literature. Here, we answer Susanne Pfeifer's opinion piece discussing the pipeline choices of our recent article estimating the germline mutation rate of rhesus macaques (Macaca mulatta). We acknowledge the differences between the method that we applied and the one preferred by Pfeifer. Yet, we advocate for full transparency and justification of choices as long as rigorous comparison of pipelines remains absent because it is the only way to conclude on best practices for the field.


Assuntos
Mutação em Linhagem Germinativa , Taxa de Mutação , Animais , Macaca mulatta/genética
7.
Gigascience ; 10(5)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33954793

RESUMO

BACKGROUND: Understanding the rate and pattern of germline mutations is of fundamental importance for understanding evolutionary processes. RESULTS: Here we analyzed 19 parent-offspring trios of rhesus macaques (Macaca mulatta) at high sequencing coverage of ∼76× per individual and estimated a mean rate of 0.77 × 10-8de novo mutations per site per generation (95% CI: 0.69 × 10-8 to 0.85 × 10-8). By phasing 50% of the mutations to parental origins, we found that the mutation rate is positively correlated with the paternal age. The paternal lineage contributed a mean of 81% of the de novo mutations, with a trend of an increasing male contribution for older fathers. Approximately 3.5% of de novo mutations were shared between siblings, with no parental bias, suggesting that they arose from early development (postzygotic) stages. Finally, the divergence times between closely related primates calculated on the basis of the yearly mutation rate of rhesus macaque generally reconcile with divergence estimated with molecular clock methods, except for the Cercopithecoidea/Hominoidea molecular divergence dated at 58 Mya using our new estimate of the yearly mutation rate. CONCLUSIONS: When compared to the traditional molecular clock methods, new estimated rates from pedigree samples can provide insights into the evolution of well-studied groups such as primates.


Assuntos
Mutação em Linhagem Germinativa , Taxa de Mutação , Animais , Células Germinativas , Macaca mulatta/genética , Masculino , Filogenia
8.
Nature ; 594(7862): 227-233, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910227

RESUMO

The accurate and complete assembly of both haplotype sequences of a diploid organism is essential to understanding the role of variation in genome functions, phenotypes and diseases1. Here, using a trio-binning approach, we present a high-quality, diploid reference genome, with both haplotypes assembled independently at the chromosome level, for the common marmoset (Callithrix jacchus), an primate model system that is widely used in biomedical research2,3. The full spectrum of heterozygosity between the two haplotypes involves 1.36% of the genome-much higher than the 0.13% indicated by the standard estimation based on single-nucleotide heterozygosity alone. The de novo mutation rate is 0.43 × 10-8 per site per generation, and the paternal inherited genome acquired twice as many mutations as the maternal. Our diploid assembly enabled us to discover a recent expansion of the sex-differentiation region and unique evolutionary changes in the marmoset Y chromosome. In addition, we identified many genes with signatures of positive selection that might have contributed to the evolution of Callithrix biological features. Brain-related genes were highly conserved between marmosets and humans, although several genes experienced lineage-specific copy number variations or diversifying selection, with implications for the use of marmosets as a model system.


Assuntos
Callithrix/genética , Diploide , Evolução Molecular , Genoma/genética , Genômica/normas , Animais , Pesquisa Biomédica , Variações do Número de Cópias de DNA , Feminino , Mutação em Linhagem Germinativa/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL/genética , Masculino , Padrões de Referência , Seleção Genética , Diferenciação Sexual/genética , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA