Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancers (Basel) ; 15(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37173903

RESUMO

MicroRNAs (miRNAs) are aberrantly expressed in prostate cancer (PC), but comprehensive knowledge about their levels and function in metastatic PC is lacking. Here, we explored the differential expression of miRNA profiles during PC progression to bone metastasis, and further focused on the downregulation of miRNA-23c and -4328 and their impact on PC growth in experimental models. Using microarray screening, the levels of 1510 miRNAs were compared between bone metastases (n = 14), localized PC (n = 7) and benign prostate tissue (n = 7). Differentially expressed miRNAs (n = 4 increased and n = 75 decreased, p < 0.05) were identified, of which miRNA-1, -23c, -143-3p, -143-5p, -145-3p, -205-5p, -221-3p, -222-3p and -4328 showed consistent downregulation during disease progression (benign > localized PC > bone metastases). The downregulation of miRNA-23c and -4328 was confirmed by reverse transcription and quantitative polymerase chain reaction analysis of 67 metastasis, 12 localized PC and 12 benign prostate tissue samples. The stable overexpression of miRNA-23c and -4328 in the 22Rv1 and PC-3 cell lines resulted in reduced PC cell growth in vitro, and in the secretion of high levels of miRNA-23c (but not -4328) in extracellular vesicles. However, no tumor suppressive effects were observed from miRNA-23c overexpression in PC-3 cells subcutaneously grown in mice. In conclusion, bone metastases display a profound reduction of miRNA levels compared to localized PC and benign disease. The downregulation of those miRNAs, including miRNA-23c and -4328, may lead to a loss of tumor suppressive effects and provide biomarker and therapeutic possibilities that deserve to be further explored.

2.
Cancers (Basel) ; 14(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358614

RESUMO

Prostate cancer (PC) bone metastases can be divided into transcriptomic subtypes, by us termed MetA-C. The MetB subtype, constituting about 20% of the cases, is characterized by high cell cycle activity, low androgen receptor (AR) activity, and a limited response to standard androgen deprivation therapy (ADT). Complementary treatments should preferably be introduced early on if the risk of developing metastases of the MetB subtype is predicted to behigh. In this study, we therefore examined if the bone metastatic subtype and patient outcome after ADT could be predicted by immunohistochemical analysis of epithelial and stromal cell markers in primary tumor biopsies obtained at diagnosis (n = 98). In this advanced patient group, primary tumor International Society of Urological Pathology (ISUP) grade was not associated with outcome or metastasis subtype. In contrast, high tumor cell Ki67 labeling (proliferation) in combination with low tumor cell immunoreactivity for PSA, and a low fraction of AR positive stroma cells in the primary tumors were prognostic for poor survival after ADT. Accordingly, the same tissue markers were associated with developing metastases enriched for the aggressive MetB subtype. The development of the contrasting MetA subtype, showing the best response to ADT, could be predicted by the opposite staining pattern. We conclude that outcome after ADT and metastasis subtype can, at least to some extent, be predicted by analysis of primary tumor characteristics, such as tumor cell proliferation and PSA expression, and AR expression in stromal cells.

3.
Cancers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067757

RESUMO

Increasing evidence indicates calcium-binding S100 protein involvement in inflammation and tumor progression. In this prospective study, we evaluated the mRNA levels of two members of this family, S100A9 and S100A12, in peripheral blood mononuclear cells (PBMCs) in a cohort of 121 prostate cancer patients using RT-PCR. Furthermore, monocyte count was determined by flow cytometry. By stratifying patients into different risk groups, according to TNM stage, Gleason score and PSA concentration at diagnosis, expression of S100A9 and S100A12 was found to be significantly higher in patients with metastases compared to patients without clinically detectable metastases. In line with this, we observed that the protein levels of S100A9 and S100A12 in plasma were higher in patients with advanced disease. Importantly, in patients with metastases at diagnosis, high monocyte count and high levels of S100A9 and S100A12 were significantly associated with short progression free survival (PFS) after androgen deprivation therapy (ADT). High monocyte count and S100A9 levels were also associated with short cancer-specific survival, with monocyte count providing independent prognostic information. These findings indicate that circulating levels of monocytes, as well as S100A9 and S100A12, could be biomarkers for metastatic prostate cancer associated with particularly poor prognosis.

4.
Sci Rep ; 10(1): 6314, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286386

RESUMO

There is good evidence that the N-acylethanolamine (NAE)/monoacylglycerol (MAG) signalling systems are involved in the pathogenesis of cancer. However, it is not known how prostate tumours affect these systems in the surrounding non-malignant tissue and vice versa. In the present study we have investigated at the mRNA level 11 components of these systems (three coding for anabolic enzymes, two for NAE/MAG targets and six coding for catabolic enzymes) in rat prostate tissue following orthotopic injection of low metastatic AT1 cells and high metastatic MLL cells. The MLL tumours expressed higher levels of Napepld, coding for a key enzyme in NAE synthesis, and lower levels of Naaa, coding for the NAE hydrolytic enzyme N-acylethanolamine acid amide hydrolase than the AT1 tumours. mRNA levels of the components of the NAE/MAG signalling systems studied in the tissue surrounding the tumours were not overtly affected by the tumours. AT1 cells in culture expressed Faah, coding for the NAE hydrolytic enzyme fatty acid amide hydrolase, at much lower levels than Naaa. However, the ability of the intact cells to hydrolyse the NAE arachidonoylethanolamide (anandamide) was inhibited by an inhibitor of FAAH, but not of NAAA. Treatment of the AT1 cells with interleukin-6, a cytokine known to be involved in the pathogenesis of prostate cancer, did not affect the expression of the components of the NAE/MAG system studied. It is thus concluded that in the model system studied, the tumours show different expressions of mRNA coding for key the components of the NAE/MAG system compared to the host tissue, but that these changes are not accompanied by alterations in the non-malignant tissue.


Assuntos
Etanolaminas/metabolismo , Monoglicerídeos/metabolismo , Neoplasias da Próstata/patologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas/genética , Fosfolipase D/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/genética
5.
Prostate ; 78(4): 257-265, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29250809

RESUMO

BACKGROUND: Microseminoprotein-beta (MSMB) is a major secretory product from prostate epithelial cells. MSMB synthesis is decreased in prostate tumors in relation to tumor grade. MSMB levels are also reduced in the circulation and MSMB is therefore used as a serum biomarker for prostate cancer. We hypothesized that cancers induce a reduction in MSMB synthesis also in the benign parts of the prostate, and that the magnitude of this response is related to tumor aggressiveness. Reduced levels of MSMB in the circulation could therefore be a consequence of reduced MSMB expression not only in tumor tissue but also in the benign prostate tissue. METHODS: MSMB expression was analyzed in prostatectomy specimens from 36 patients using immunohistochemistry and qRT-PCR. MSMB expression in the benign prostate tissue was analyzed in relation to Gleason score, tumor stage, and distance to the tumor. Furthermore, Dunning rat prostate tumors with different aggressiveness were implanted into the prostate of Copenhagen rats to study if this affected the MSMB expression in the tumor-adjacent benign rat prostate tissue. RESULTS: In prostatectomy specimens, MSMB expression was reduced in prostate tumors but also in the tumor-adjacent benign parts of the prostate. The reduction in tumor MSMB was related to tumor grade and stage, and the reduction in the benign parts of the prostate to tumor grade, stage, and distance to the tumor. Implantation of Dunning cancer cells into the rat prostate resulted in reduced MSMB protein levels in the tumor-adjacent benign prostate tissue. Rapidly growing and metastatic MatLyLu tumors had a more pronounced effect than slow-growing non-metastatic G tumors. CONCLUSION: Our data suggest that aggressive prostate tumors suppress MSMB synthesis in the benign prostate and that this could explain why serum levels of MSMB are decreased in prostate cancer patients. This study suggests that markers for aggressive cancer can be found among factors altered in parallel in prostate tumors and in the adjacent benign tissue.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Secretadas pela Próstata/metabolismo , Animais , Regulação para Baixo , Humanos , Imuno-Histoquímica , Masculino , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
6.
Clin Exp Metastasis ; 34(3-4): 261-271, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28447314

RESUMO

Prostate cancer (PCa) patients with bone metastases are primarily treated with androgen deprivation therapy (ADT). Less pronounced ADT effects are seen in metastases than in primary tumors. To test if acute effects of ADT was enhanced by concurrent inhibition of pro-survival insulin-like growth factor 1 (IGF-1), rats were inoculated with Dunning R3327-G tumor cells into the tibial bone marrow cavity and established tumors were treated with castration in combination with IGF-1 receptor (IGF-1R) inhibitor NVP-AEW541, or by each treatment alone. Dunning R3327-G cells were stimulated by androgens and IGF-1 in vitro. In rat tibia, Dunning R3327-G cells induced bone remodeling, identified through increased immunoreactivity of osteoblast and osteoclast markers. Tumor cells occasionally grew outside the tibia, and proliferation and apoptotic rates a few days after treatment were evaluated by scoring BrdU- and caspase-3-positive tumor cells inside and outside the bone marrow cavity, separately. Apoptosis was significantly induced outside, but unaffected inside, the tibial bone by either castration or NVP-AEW541, and the maximum increase (2.7-fold) was obtained by the combined treatment. Proliferation was significantly reduced by NVP-AEW541, independently of growth site, although the maximum decrease (24%) was observed when NVP-AEW541 was combined with castration. Tumor cell IGF-1R immunoreactivity was evaluated in clinical PCa bone metastases (n = 61), and positive staining was observed in most cases (74%). In conclusion, IGF-1R inhibition may be evaluated in combination with ADT in patients with metastatic PCa, or in combination with therapies for the subsequent development of castration-resistant disease, although diverse responses could be anticipated depending on metastasis site.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias da Próstata/patologia , Receptores de Somatomedina/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Estadiamento de Neoplasias , Fosforilação/efeitos dos fármacos , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Células Tumorais Cultivadas
7.
Neoplasia ; 18(3): 152-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26992916

RESUMO

Prostate cancer generally metastasizes to bone, and most patients have tumor cells in their bone marrow already at diagnosis. Tumor cells at the metastatic site may therefore progress in parallel with those in the primary tumor. Androgen deprivation therapy is often the first-line treatment for clinically detectable prostate cancer bone metastases. Although the treatment is effective, most metastases progress to a castration-resistant and lethal state. To examine metastatic progression in the bone microenvironment, we implanted androgen-sensitive, androgen receptor-positive, and relatively slow-growing Dunning G (G) rat prostate tumor cells into the tibial bone marrow of fully immune-competent Copenhagen rats. We show that tumor establishment in the bone marrow was reduced compared with the prostate, and whereas androgen deprivation did not affect tumor establishment or growth in the bone, this was markedly reduced in the prostate. Moreover, we found that, with time, G tumor cells in the bone microenvironment progress to a more aggressive phenotype with increased growth rate, reduced androgen sensitivity, and increased metastatic capacity. Tumor cells in the bone marrow encounter lower androgen levels and a higher degree of hypoxia than at the primary site, which may cause high selective pressures and eventually contribute to the development of a new and highly aggressive tumor cell phenotype. It is therefore important to specifically study progression in bone metastases. This tumor model could be used to increase our understanding of how tumor cells adapt in the bone microenvironment and may subsequently improve therapy strategies for prostate metastases in bone.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Próstata/patologia , Microambiente Tumoral , Androgênios/metabolismo , Animais , Medula Óssea/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral/transplante , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Próstata/patologia , Neoplasias da Próstata/metabolismo , Ratos , Receptores Androgênicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA