Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Rep ; 14(1): 2084, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267488

RESUMO

We present an experimental study of plasmonic slanted slit gratings (PSSGs) designed to achieve directional coupling between an incident light beam and surface plasmon polaritons (SPPs) propagating along the surface of the structure. We also investigate mirrored PSSG pairs interconnected by a plasmonic slab waveguide. The structures are fabricated using direct milling by a gallium focused ion beam (FIB). In a mirrored pair arrangement, the first PSSG couples a perpendicularly-incident light beam to SPPs propagating in one direction along the waveguide, while the second PSSG decouples SPPs to perpendicularly-emerging light. This configuration shows promise for sensing applications due to the high sensitivity of the excited SPPs to changes in the refractive index of the bounding medium, and the separation of the optics from the fluidics by the substrate. The design also exhibits robustness to fabrication tolerances. The optical characteristics and sensing potential are investigated theoretically and experimentally, highlighting its potential for a wide range of applications.

2.
Sensors (Basel) ; 23(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005416

RESUMO

Surface plasmon resonance is an effect widely used for biosensing. Biosensors based on this effect operate in different configurations, including the use of diffraction gratings as couplers. Gratings are highly tunable and are easy to integrate into a fluidic system due to their planar configuration. We discuss the optimization of plasmonic grating couplers for use in a specific sensor configuration based on the optical switch. These gratings present a sinusoidal profile with a high depth/period ratio. Their interaction with a p-polarized light beam results in two significant diffracted orders (the 0th and the -1st), which enable differential measurements cancelling noise due to common fluctuations. The gratings are fabricated by combining laser interference lithography with nanoimprinting in a process that is aligned with the challenges of low-cost mass production. The effects of different grating parameters such as the period, depth and profile are theoretically and experimentally investigated.

3.
Opt Express ; 31(19): 31200-31211, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710644

RESUMO

We propose the concept of a Dirac grating, where periodic permittivity perturbations approach a train of Dirac functions. We show that Dirac gratings can yield identical spectral characteristics for higher-order gratings compared to first-order gratings of the same length. Using an inverse Fourier transform technique, we design different types of Dirac gratings, including structures operating at the exceptional point where parity-time symmetry breaks down, producing unidirectional reflectance. We employ analytical and numerical techniques to validate our theory by modelling practical examples of Dirac gratings implemented in dielectric stacks and silicon nanophotonic waveguides.

4.
Opt Express ; 31(14): 22481-22496, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475358

RESUMO

The electrical bandwidth of an electro-optic modulator plays a vital role in determining the throughput of an optical communications link. We propose a broadband plasmonic electro-optic modulator operating at telecommunications wavelengths (λ0 ∼ 1550 nm), based on free carrier dispersion in indium tin oxide (ITO). The ITO is driven through its epsilon-near-zero point within the accumulation layers of metal-oxide-semiconductor (MOS) structures. The MOS structures are integrated into a pair of coupled metal-insulator-metal (MIM) waveguides aligned on a planarized silicon waveguide. The coupled MIM waveguides support symmetric and asymmetric plasmonic supermodes, excited adiabatically using mode transformation tapers, by the fundamental TM0 and TE0 modes of the underlying silicon waveguide, respectively, such that the modulator can operate in either mode as selected by the input polarisation to the silicon waveguide. The modulator has an active section 1.5 to 2 µm long, enabling the modulator to operate as a lumped element to bandwidths exceeding 200 GHz (3 dB electrical, RC-limited). The modulators produce an extinction ratio in the range of 3.5 to 6 dB, and an insertion loss in the range of 4 to 7.5 dB including input/output mode conversion losses. The AC drive voltage is ±1.75 V. The devices comprise only inorganic materials and are realisable using standard deposition, etching and nanolithography techniques.

5.
Opt Lett ; 48(14): 3733-3736, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450737

RESUMO

A deep metal grating enables quasi-phase-matched simultaneous excitation of two counterpropagating surface plasmon modes by means of its +1st and -2nd diffraction orders. The resulting angular reflection spectra of the scattered -1st and zeroth orders exhibit three interleaved zeros and maxima in a range centered around the Littrow angle. The spectra differ thoroughly from the usual reflection dip resulting from single-order plasmon coupling that produces strong absorption. The zeroth and -1st orders exhibit two crossing angles enabling high-sensitivity common-mode detection schemes designed to reject variations in source power and environmental noise. The proof of concept and experimental assessment of this new surface plasmon resonance (SPR) sensing scheme are demonstrated by monitoring gases in a pressure-controlled chamber. A limit of detection (LOD) of 2 × 10-7 refractive index unit (RIU) was achieved.


Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Limite de Detecção
6.
Biosensors (Basel) ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37232919

RESUMO

Optical biosensors target widespread applications, such as drug discovery, medical diagnostics, food quality control, and environmental monitoring. Here, we propose a novel plasmonic biosensor on the end-facet of a dual-core single-mode optical fiber. The concept uses slanted metal gratings on each core, interconnected by a metal stripe biosensing waveguide to couple the cores via the propagation of surface plasmons along the end facet. The scheme enables operation in transmission (core-to-core), thereby eliminating the need to separate the reflected light from the incident light. Importantly, this simplifies and reduces the cost of the interrogation setup because a broadband polarization-maintaining optical fiber coupler or circulator is not required. The proposed biosensor enables remote sensing because the interrogation optoelectronics can be located remotely. In vivo biosensing and brain studies are also enabled because the end-facet can be inserted into a living body, once properly packaged. It can also be dipped into a vial, precluding the need for microfluidic channels or pumps. Bulk sensitivities of 880 nm/RIU and surface sensitivities of 1 nm/nm are predicted under spectral interrogation using cross-correlation analysis. The configuration is embodied by robust and experimentally realizable designs that can be fabricated, e.g., using metal evaporation and focused ion beam milling.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Microfluídica
7.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772228

RESUMO

A new plasmonic configuration is proposed for application in a sensor and demonstrated for the detection of variations in the bulk refractive index of solutions. The configuration consists of monitoring two diffracted orders resulting from the interaction of a TM-polarized optical beam incident on a grating coupler, operating based on an effect termed the "optical switch". The two monitored diffracted orders enable differential measurements which cancel the drift and perturbations common to both, leading to an improved detection limit, as demonstrated experimentally. The measured switch pattern associated with the grating coupler is in good agreement with theory. Bulk sensing is demonstrated under intensity interrogation via the sequential injection of solutions comprised of glycerol in water into a fluidic cell. A limit of detection of about 10-6 RIU was achieved. The optical switch configuration is easy to implement and is cost-effective, yielding a highly promising approach for the sensing and the real-time detection of biological species.

8.
Opt Express ; 31(2): 2072-2087, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785229

RESUMO

Physical unclonable functions (PUFs) are receiving significant attention with the rise of cryptography and the drive towards creating unique structures for security applications and anti-counterfeiting. Specifically, nanoparticle based PUFs can produce a high degree of randomness through their size, shape, spatial distribution, chemistry, and optical properties, rendering them very difficult to replicate. However, nanoparticle PUFs typically rely on complex preparation procedures involving chemical synthesis in solution, therefore requiring dispersion, and embedding within a host medium for application. We propose laser machining of surfaces as a one-step process for the creation of complex nanoparticle based PUFs by machining 600 nm thick copper films on a silicon substrate to yield a complex spatial and chemical distribution of redeposited copper, silicon, and oxide species. The approaches and material system investigated have potential applications in silicon chip authentication.

9.
Opt Express ; 30(26): 46501-46519, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558602

RESUMO

The carrier density profile in metal-oxide-semiconductor (MOS) capacitors is computed under gating using two classical models - conventional drift-diffusion (CDD) and density-gradient (DG) - and a self-consistent Schrödinger-Poisson (SP) quantum model. Once calibrated the DG model approximates well the SP model while being computationally more efficient. The carrier profiles are used in optical mode computations to determine the gated optical response of surface plasmons supported by waveguides incorporating MOS structures. Indium tin oxide (ITO) is used as the semiconductor in the MOS structures, as the real part of its optical permittivity can be driven through zero to become negative under accumulation, enabling epsilon-near-zero (ENZ) effects. Under accumulation the predictions made by the CDD and SP models differ considerably, in that the former predicts one ENZ point but the latter predicts two. Consequently, the CDD model significantly underestimates perturbations in n e f f of surface plasmons (by ∼4×) and yields incorrect details in surface plasmon fields near ENZ points. The discrepancy is large enough to invalidate the CDD model in MOS structures on ENZ materials under accumulation, strongly motivating a quantum carrier model in this regime.

10.
Anal Chem ; 94(38): 13145-13152, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36106567

RESUMO

Surface plasmon polaritons (SPPs) propagating along a waveguide working electrode are sensitive to changes in the local refractive index, which follow changes in the concentration of reduced and oxidized species near the working electrode. The real-time response of the output optical power from a waveguide working electrode is proportional to the time convolution of the electrochemical current density, precluding the need to compute the latter a posteriori via numerical integration. Convolutional voltammetry yields complementary results to conventional voltammetry and can be used to determine the diffusion constant, bulk concentration, and the number of transferred electrons of electroactive species. The theoretical optical response of a waveguide working electrode is derived and validated experimentally via chronoamperometry and cyclic voltammetry measurements under low power SPP excitation, for various concentrations of potassium ferricyanide in potassium nitrate electrolyte at various scan rates. Increasing the SPP power induces a regime where the SPPs no longer act solely as a probe of electrochemical activity, but also as a pump creating energetic electrons and holes via absorption in the working electrode. In this regime, the transfer of energetic carriers (electrons and holes) to the redox species dominates the electrochemical current density, which becomes significantly enhanced relative to equilibrium conditions (low SPP power). In this regime the output optical power remains proportional to the time convolution of the current density, even with the latter significantly enhanced by the transfer of energetic carriers.

11.
Sci Adv ; 8(20): eabm9303, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584214

RESUMO

Plasmonic catalysis holds promise for opening new reaction pathways inaccessible thermally or for improving the efficiency of chemical processes. We report a gold stripe waveguide along which infrared (λ0 ~ 1350 nanometers) surface plasmon polaritons (SPPs) propagate, operating simultaneously as an electrochemical working electrode. Cyclic voltammograms obtained under SPP excitation enable oxidative processes involving energetic holes to be investigated separately from reductive processes involving energetic electrons. Under SPP excitation, redox currents increase by 10×, redox potentials decrease by ~2× and split in correlation with photon energy, and the charge transfer resistance drops by ~2× as measured using electrochemical impedance spectroscopy. The temperature of the working electrode was monitored in situ, ruling out thermal effects. Chronoamperometry measurements with SPPs modulated at 600 hertz yield a commensurately modulated current response, ruling out thermally enhanced mass transport. Our observations indicate opening of optically controlled nonequilibrium redox channels associated with energetic carrier transfer to the redox species.

12.
Opt Express ; 30(4): 5167-5176, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209486

RESUMO

Parity-time symmetric Bragg gratings produce unidirectional reflection around the exceptional point. We propose and explore directional coupling of gain and loss modulated waveguide Bragg gratings operating at around 880 nm with long-range surface plasmon polaritons. Step-in-width modulation of a Ag stripe supporting long-range plasmons combined with a periodic modulation of the cladding were used to balance the real and imaginary index perturbation of the gratings. IR140 dye molecules in solvent forms a portion of the uppercladding, providing gain under optical pumping. We investigate directional coupling between a pair of parity-time symmetric waveguide Bragg gratings operating near their exceptional point, arranged in various configurations - duplicate, duplicate-shifted and duplicate-flipped. We also investigate coupling to a bus waveguide and to a conventional waveguide Bragg grating. Unidirectional multi-wavelength reflection and coupled supermode conversion are predicted.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35081023

RESUMO

Surface acoustic wave (SAW) cavities have been widely applied as electronic bandpass filters, sensors, microfluidic tweezers, and, in recent years, as devices for coupling with quantum systems. Here we propose a novel method of analyzing acoustic Fabry-Pérot spectra, by analogy with optical cavities, to determine the free surface velocity and attenuation of SAW waves, as well as the reflection of interdigital transducers (IDTs), all of which are crucial design parameters. In our experiment, two-port SAW resonators, consisting of two IDTs laterally separated by a free surface cavity length, are used to generate SAWs on 128° Y-X lithium niobate that are trapped between the two IDTs which also act as Bragg reflectors. Resonant cavity peaks can be observed through the electrical S11 (reflection) spectrum measured on one IDT. The free spectral range and linewidths of cavity peaks are then measured to obtain the free surface SAW velocity, SAW propagation attenuation coefficient, and IDT reflection phase and amplitude. Our method of analyzing Fabry-Pérot spectra provides an intuitive approach for determining key characteristics of SAW waves and cavities.


Assuntos
Acústica , Som , Microfluídica , Transdutores
14.
Colloids Surf B Biointerfaces ; 208: 112138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34614455

RESUMO

Non-specific adsorption of proteins to the surfaces of microfluidic channels poses a serious problem in lab-on-a-chip devices involving complex biological fluids. Materials commonly used in the formation of microfluidic channels include CYTOP, silica and SU-8. CYTOP is a transparent fluoropolymer (Poly[perfluoro(4-vinyloxy-1-butene)]) with a low refractive index that approximately matches the refractive index of biologically compatible fluids, and is useful in optical biosensors. Using a microfluidic and fluorescence microscopy set-up, the non-specific adsorption of bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) to three grades of CYTOP (S, M and A), silica, and SU-8 is investigated. Surface properties such as roughness and wettability are also characterized via an atomic force microscope and a contact angle measurement system. The non-specific adsorption of protein occurs with a highly variable load across these materials. Surprisingly, significantly lower adsorption occurred on SU-8 compared to the other materials, likely due to its hydrophilicity (post-cleaning). Among the 3 grades of CYTOP considered, the lowest adsorption occurred on S-grade. BSA adsorption to silica was higher than on S-grade CYTOP and significantly higher than on SU-8 despite being hydrophilic, due to a fixed positive charge formed within the layer during fabrication, which attracts negatively-charged BSA in buffer.


Assuntos
Microfluídica , Soroalbumina Bovina , Adsorção , Microscopia de Força Atômica , Propriedades de Superfície
15.
Opt Lett ; 46(18): 4482-4485, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525027

RESUMO

We use the end-facet of a solid-core polarization-maintaining photonic crystal fiber (PM-PCF) as a platform on which to fabricate resonant plasmonic nanostructures. Solid-core PM-PCFs can be excited in a polarization-aligned single mode by supercontinuum light, so they are well-suited to the wavelength-interrogation of resonant plasmonic nanostructures, especially supporting complex spectra over a broad spectral range. The nanostructures implemented consist of an array of heptamer-arranged nanoholes formed in a thin Au film. The nanoholes were milled with a He+ focused ion beam, with the array polarization-aligned in situ to cover the solid core of the PM-PCF. Transmittance spectra, measured using a supercontinuum source coupled to the input of the PM-PCF, reveal a rich set of Fano resonances associated with localized and propagating surface plasmons. The measured spectra are compared to computations in order to identify the resonant modes. The spectra redshift as the medium covering the nanoholes changes from air to oil, anticipating application to sensing.

16.
Opt Express ; 29(11): 17365-17374, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154281

RESUMO

We propose a nanoplasmonic interferometric biosensor, which exploits the selective excitation of multipolar plasmonic modes in a nanoslit to provide a novel scheme for highly-sensitive biosensing. In this design, two counter-propagating surface plasmon polaritons interfere at the location of the nanoslit, selectively exciting the dipolar and quadrupolar modes of the structure depending on the phase relationship induced by the analyte. The contrasting radiation patterns produced by these modes result in large changes in the angular distribution of the transmitted light that depends on the analyte concentration. The resultant far-field is numerically modeled and the sensing performance of the structure is assessed, resulting in maximum bulk and surface sensitivities of SB = 1.12 × 105 deg/RIU and SS = 302 deg/RIU, respectively, and a bulk-sensing resolution of the order of 10-8 RIU. The design allows ample control over the trade-off between operating range and resolution through the slit's width, making this platform suitable for a broad range of sensing requirements.


Assuntos
Técnicas Biossensoriais/instrumentação , Interferometria/métodos , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Humanos
17.
Opt Express ; 28(21): 31637-31657, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115133

RESUMO

Optical phased arrays are of strong interest for beam steering in telecom and LIDAR applications. A phased array ideally requires that the field produced by each element in the array (a pixel) is fully controllable in phase and amplitude (ideally constant). This is needed to realize a phase gradient along a direction in the array, and thus beam steering in that direction. In practice, grating lobes appear if the pixel size is not sub-wavelength, which is an issue for many optical technologies. Furthermore, the phase performance of an optical pixel may not span the required 2π phase range or may not produce a constant amplitude over its phase range. These limitations result in imperfections in the phase gradient, which in turn introduce undesirable secondary lobes. We discuss the effects of non-ideal pixels on beam formation, in a general and technology-agnostic manner. By examining the strength of secondary lobes with respect to the main lobe, we quantify beam steering quality and make recommendations on the pixel performance required for beam steering within prescribed specifications. By applying appropriate compensation strategies, we show that it is possible to realize high-quality beam steering even when the pixel performance is non-ideal, with intensity of the secondary lobes two orders of magnitude smaller than the main lobe.

18.
Phys Rev Lett ; 124(15): 153903, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357032

RESUMO

Exceptional points (EPs) are branch point singularities of self-intersecting Riemann sheets, and they can be observed in a non-Hermitian system with complex eigenvalues. It has been revealed recently that dynamically encircling EPs by adiabatically changing the parameters of a system composed of lossy optical waveguides could lead to asymmetric (input-output) mode transfer. However, the length of the waveguides had to be considerable to ensure adiabatic evolution. Here we demonstrate that the parameters can change adiabatically along a smaller encircling loop by utilizing moving EPs, leading to significant shortening of the structures compared to fixed EPs. Meanwhile, the mode transmittance is remarkably improved and the transfer efficiency persists at ∼90%. Moving EPs are very promising for applications such as highly integrated broadband optical switches and convertors operating at telecommunication wavelengths.

19.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354164

RESUMO

A bulk refractive index sensor based on a straight long-range surface plasmon polariton (LRSPP) waveguide is theoretically designed. The waveguide sensor consists of an Au stripe that is embedded in ultraviolet sensitive polymer SU-8. The geometric parameters are optimized by finite difference eigenmode method at the optical wavelength of 850 nm. The sensitivity of 196 dB/RIU/mm can be obtained with a 1.5 µm wide, 25 nm thick Au stripe waveguide. Straight LRSPP waveguides are fabricated by a double layer lift-off process. Its optical transmission is characterized to experimentally prove the feasibility of the proposed design. This sensor has potential for the realization of a portable, low-cost refractometer.

20.
Opt Express ; 27(18): 25470-25484, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510419

RESUMO

Two integrated Young's interferometer (YI) sensors based on long-range surface plasmon polariton (LRSPP) waveguides are presented. The first sensor is single-channel and based on a Y-junction splitter, and the other is multi-channel and based on a corporate feed structure. The multichannel YI enables simultaneous and independent phase-based monitoring of refractive index changes in multiple channels. The diverging output beams from the waveguides are overlapped in the far field to form interference patterns which are then post-processed using the fast Fourier transform (FFT) algorithm to extract phase values. The sensing capability of these YIs was demonstrated through sequential injection of solutions with increasing refractive index into the sensing channels. A detection limit of ∼ 1 × 10-6 RIU was obtained for both LRSPP based YIs, a significant improvement over measurements from similar structures using attenuation-based sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA