Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(27): 7948-7957, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36255915

RESUMO

Digital image correlation (DIC) is a popular, noncontacting technique to measure full-field deformation by using cameras to track the motion of an applied surface pattern. Because it is noncontacting, DIC can be performed for extreme temperature applications (e.g., hot-fire rocket testing of carbon composite rocket nozzles) under harsh conditions during which bonded gauges are damaged. Speckle pattern inversion is a phenomenon that sometimes occurs while performing high-temperature DIC. During speckle pattern inversion, portions of the surface pattern that were initially darker at room temperature (e.g., graphite) may emit more light due to blackbody radiation than the portions that were initially paler, thereby producing images in which the pattern appears inverted at high temperature relative to the initial pattern at room temperature. This phenomenon can prevent the correlation algorithm from being able to resolve the displacements between images. This work compares three methods to mitigate speckle pattern inversion: (A) the subtraction method, a recently-published technique in which two high-temperature images are subtracted to remove unwanted light; (B) the filtering method, a popular technique in which optical bandpass filters screen out unwanted light; and (C) the histogram rescaling method, a proposed new method that pairs a color camera with a blue light source and uses information from the green sensor of the camera to correct against inversion in the blue sensor through postprocessing. The histogram rescaling method is shown to successfully eliminate speckle pattern inversion and has the added advantages that it does not require quasi-static loading to be able to compensate for speckle pattern inversion, nor does it impose thick-glass distortions caused by the optical filter.

2.
Rev Sci Instrum ; 93(8): 084903, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050110

RESUMO

Digital Image Correlation (DIC) is a camera-based method of measuring full-field displacements and strains from the surface of a deforming object. It can be applied at any length scale (determined by the lenses) and any time scale (determined by the camera), and because it is non-contacting, it can also be used at temperatures much higher than can be withstood by bonded strain gauges. At extreme temperatures, materials emit light in the form of blackbody radiation, which can saturate the camera sensor. It has previously been shown that the emitted light can be effectively screened by using ultraviolet (UV) cameras, lenses, and filters; however, commercially available UV cameras are relatively slow, which limits the speed of combined UV-DIC measurements. In this study, a UV intensifier was paired with a high-speed camera, and its ability to perform UV-DIC at high temperature and high speed was investigated. The system was compared over three different experiments: (A) a quasi-static thermal expansion test at high temperature, (B) a vibration test at room temperature, and (C) the same vibration test repeated at high temperature. The system successfully performed DIC up to at least 1600 °C at frame rates of 5000 fps, which is more than 100 times faster than other examples of UV-DIC in the literature. In all cases, measurements made using the UV intensifier were much noisier than those made without the intensifier, but the intensifier enabled measurements at temperatures well above those which an unfiltered high-speed camera otherwise saturates.

3.
Rev Sci Instrum ; 90(4): 045117, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042968

RESUMO

Digital Image Correlation (DIC) measures full-field strains by tracking displacements of a specimen using images taken before and after deformation. At high temperatures, materials emit light in the form of blackbody radiation, which can interfere with DIC images. To screen out that light, DIC has been recently adapted by using ultraviolet (UV) range cameras, lenses, and filters. Before now, UV-DIC had been demonstrated at the centimeter scale using commercially available UV lenses and filters. Commercial high-magnification lenses using visible light have also been used for DIC. However, there is currently no commercially available high-magnification lens that will allow images to be taken (a) in the UV range, (b) at a submillimeter scale, and (c) from a relatively long working distance separating a specimen inside a test chamber and a camera outside the chamber. In this work, a custom UV high-magnification lens is demonstrated to perform high-magnification, high-temperature DIC measurements. To demonstrate the capabilities of this lens, a series of thermo-mechanical tests was run on a stainless-steel ring specimen. Two UV cameras performed simultaneous measurements: one at lower magnification using a commercial UV lens, and one with the custom high-magnification UV lens. At room temperature, the custom lens produces sufficiently bright images to perform DIC, while at high temperature (demonstrated to 900 °C) the images retained sufficient contrast while avoiding oversaturation. The lens can detect submillimeter rigid motion and tensile strains from long working distances and high magnification. These tests show that the custom lens is suitable for use in high-magnification UV-DIC measurements.

4.
Rev Sci Instrum ; 85(4): 045121, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784673

RESUMO

A method is presented for extending two-dimensional digital image correlation (DIC) to a higher range of temperatures by using ultraviolet (UV) lights and UV optics to minimize the light emitted by specimens at those temperatures. The method, which we refer to as UV-DIC, is compared against DIC using unfiltered white light and DIC using filtered blue light which in the past have been used for high temperature applications. It is shown that at low temperatures for which sample glowing is not an issue all three methods produce the same results. At higher temperatures in our experiments, the unfiltered white light method showed significant glowing between 500 and 600 °C and the blue light between 800 and 900 °C, while the UV-DIC remained minimally affected until the material began nearing its melting point (about 1260 °C). The three methods were then used to obtain the coefficient of thermal expansion as a function of temperature for the nickel superalloy Hastelloy-X. All three methods give similar coefficients at temperatures below which glowing becomes significant, with the values also being comparable to the manufacturers specifications. Similar results were also seen in uniaxial tension tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA