Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 199: 115983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277962

RESUMO

Many studies addressed ocean acidification (OA) effects on marine life, whereas its effects on sedimentary organic matter (OM) have received less attention. We investigated differences in OM features in sediments from unvegetated and seagrass (Posidonia oceanica) beds in a shallow hydrothermal area (Aeolian Archipelago, Mediterranean Sea), under natural (8.1-8.0) and acidified (7.8-7.9) conditions. We show that a pH difference of -0.3 units have minor effects on OM features in unvegetated sediments, but relevant consequences within acidified seagrass meadows, where OM quantity and nutritional quality are lower than those under natural pH conditions. Effects of acidified conditions on OM biogeochemistry vary between unvegetated and seagrass sediments, with lower C degradation rates and longer C turnover time in the former than in the latter. We conclude that OA, although with effects not consistent between unvegetated and vegetated sediments, can affect OM quantity, composition, and degradation, thus having possible far-reaching consequences for benthic trophic webs.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Ecossistema , Concentração de Íons de Hidrogênio , Alismatales/química , Sedimentos Geológicos/química
2.
Mar Environ Res ; 186: 105946, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917890

RESUMO

Ocean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO2 conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient. Future ocean conditions seem to constrain the morphological development of seedlings. However, high pCO2 exposures caused an initial increase in the degree of saturation of fatty acids in leaves and then improved the fatty acid adjustment increasing unsaturation levels in leaves (but not in seeds), suggesting a nutritional compound translocation. Results also suggested a P. oceanica structural components remodelling which may counteract the effects of ocean acidification but would not enhance seagrass seedling productivity.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Plântula , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Alismatales/fisiologia
3.
Sci Total Environ ; 851(Pt 2): 158320, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037894

RESUMO

Seagrass meadows are important shallow coastal ecosystems due to their contribution to enhancing biodiversity, nutrient cycling, carbon burial, and sediment stabilisation, but the maintenance of their integrity has been threatened by several anthropogenic disturbances. Active restoration is considered a reliable strategy to enhance recovery of seagrass ecosystems, and decision making for correct seagrass restoration management requires relying on valuable information regarding the effectiveness of past restoration actions and experimental efforts. Previous experimental efforts and human-mediated active restoration actions of the slow growing seagrass Posidonia oceanica have been collated here by combining a literature systematic review and questionnaires consulting seagrass ecology experts. Overall, the poor consistency of the available information on P. oceanica restoration may be due to the wide portfolio of practices and methodologies used in different conditions, that supports the need of further field manipulative experiments in various environmental contexts to fill the identified knowledge gaps. The current situation requires an international, collaborative effort from scientists and stakeholders to jointly design the future strategy forward in identifying the best practices that lead to efficient restorations of P. oceanica habitat and functioning.


Assuntos
Alismatales , Ecossistema , Humanos , Ecologia , Biodiversidade , Carbono , Mar Mediterrâneo
4.
Glob Chang Biol ; 27(12): 2645-2655, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33638211

RESUMO

Over the years, concern about the effects of microplastics has grown. Here, we answered the main question "What are the impacts of microplastics on the functional traits of fish species?" through a meta-analysis. The general impact of microplastic exposure on the functional traits of fishes and specifically on eight variables, namely, behaviour, development, fecundity, feeding, growth, health, hatching and survival was explored. Subgroup analyses were performed to detect correlations between the impact of microplastics and the following factors: species, life stage, habitat, water column habitat, day of exposure to microplastics and microplastic size, type and shape. A meta-regression analysis allowed understanding the correlation between the impact of microplastics and the size of organisms. Generally, microplastics have a negative effect on the functional traits of fishes. Feeding and behaviour, followed by growth showed the greatest impact. Among the subgroup analysis, four of the eight variables considered showed a significant difference between groups: species, life stage, microplastic shape and days of exposure to microplastics. Depending on their life stage, organisms may be more sensitive to microplastic pollution. Changes in growth rates, development of early life stage and behavioural patterns in fishes may have a negative effect on the structure and functions of aquatic ecosystem in the long term and consequently affect the ability of aquatic ecosystems to provide ecosystem services and sustain human communities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Humanos , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA