Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895234

RESUMO

Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of MHC class I and related molecules. Functionally, these receptor families are involved in licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on a H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.

2.
Crit Care Explor ; 5(10): e0990, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868029

RESUMO

BACKGROUND: We report the case of a patient with aplastic anemia and pancytopenia on immune-suppressive therapy who developed invasive pulmonary infection with mucormycosis and was treated with immune adjuvant therapy. CASE SUMMARY: Given the patient's profound lymphopenia and progressive invasive mucor despite dual antifungal drug therapy, interleukin (IL)-7, a cytokine that induces lymphocyte activation and proliferation, was instituted and resulted in normalization of absolute lymphocyte counts and was temporally associated with clearance of fungal pathogens and resolution of clinical symptoms. CONCLUSION: Patients with life-threatening fungal infections are frequently immune suppressed and immune adjuvant therapies should be considered in patients who are not responding to antifungal drugs and source control. Well-designed, double-blind, placebo-controlled trials are needed to advance the field. Although a number of immune adjuvants may be beneficial in fungal sepsis, IL-7 is a particularly attractive immune adjuvant because of its broad immunologic effects on key immunologic pathways that mediate enhanced antifungal immune system activity.

3.
Elife ; 112022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190189

RESUMO

BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2 deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.


Assuntos
Domínio BTB-POZ , Fatores de Transcrição de Zíper de Leucina Básica , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular/genética , Cromatina , Citocinas/genética , Granzimas , Células Matadoras Naturais , Camundongos , Fatores de Transcrição/genética
4.
Nature ; 584(7822): 624-629, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788723

RESUMO

Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Transdução de Sinais
5.
Cell Rep ; 32(4): 107969, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726632

RESUMO

Major histocompatibility complex class I (MHC-I)-restricted immune responses are largely attributed to cytotoxic T lymphocytes (CTLs). However, natural killer (NK) cells, as predicted by the missing-self hypothesis, have opposing requirements for MHC-I, suggesting that they may also demonstrate MHC-I-restricted effects. In mice, the Ly49 inhibitory receptors prevent NK cell killing of missing-self targets in effector responses, and they have a proposed second function in licensing or educating NK cells via self-MHC-I in vivo. Here we show MHC-I-restricted control of murine cytomegalovirus (MCMV) infection in vivo that is NK cell dependent. Using mice lacking specific Ly49 receptors, we show that control of MCMV requires inhibitory Ly49 receptors and an inhibitory signaling motif and the capacity for MCMV to downregulate MHC-I. Taken together, these data provide definitive evidence that the inhibitory receptors are required for missing-self rejection and are relevant to MHC-I-restricted NK cell control of a viral infection in vivo.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Antígenos Ly , Infecções por Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/imunologia , Muromegalovirus/patogenicidade , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores de Células Matadoras Naturais , Viroses
6.
J Exp Med ; 216(1): 117-132, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30559127

RESUMO

Tissue-resident memory CD8+ T cells (TRMs) confer rapid protection and immunity against viral infections. Many viruses have evolved mechanisms to inhibit MHCI presentation in order to evade CD8+ T cells, suggesting that these mechanisms may also apply to TRM-mediated protection. However, the effects of viral MHCI inhibition on the function and generation of TRMs is unclear. Herein, we demonstrate that viral MHCI inhibition reduces the abundance of CD4+ and CD8+ TRMs, but its effects on the local microenvironment compensate to promote antigen-specific CD8+ TRM formation. Unexpectedly, local cognate antigen enhances CD8+ TRM development even in the context of viral MHCI inhibition and CD8+ T cell evasion, strongly suggesting a role for in situ cross-presentation in local antigen-driven TRM differentiation. However, local cognate antigen is not required for CD8+ TRM maintenance. We also show that viral MHCI inhibition efficiently evades CD8+ TRM effector functions. These findings indicate that viral evasion of MHCI antigen presentation has consequences on the development and response of antiviral TRMs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Evasão da Resposta Imune , Memória Imunológica , Viroses/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Chlorocebus aethiops , Cães , Células Madin Darby de Rim Canino , Camundongos , Camundongos Transgênicos , Células Vero , Viroses/genética , Viroses/patologia
7.
J Exp Med ; 216(1): 99-116, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30559128

RESUMO

Natural killer (NK) cells are innate lymphocytes that are thought to kill cells that down-regulate MHC class I (MHC-I) through "missing-self" recognition. NK cells from B2m-/- mice that lack surface MHC-I, however, are not autoreactive as predicted by the missing-self hypothesis. As a result, it is unclear if MHC-I down-regulation in vivo induces NK cell reactivity or tolerance to missing-self. Here, we generated a floxed B2m mouse to acutely down-regulate MHC-I in vivo in a host that normally expresses MHC-I. Global down-regulation of MHC-I induced NK cell hyporesponsiveness and tolerance to missing-self without overt missing-self reactivity. In contrast, down-regulation of MHC-I on a small fraction of hematopoietic cells triggered missing-self reactivity. Surprisingly, down-regulation of MHC-I only on CD4+ T cells predominately induced tolerance to missing-self without resetting NK cell responsiveness. In this setting, inflammation triggered substantial missing-self reactivity. These results show that MHC-I down-regulation can induce either NK cell tolerance or killing in vivo and that inflammation promotes missing-self reactivity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Regulação para Baixo/imunologia , Tolerância Imunológica , Células Matadoras Naturais/imunologia , Microglobulina beta-2/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Microglobulina beta-2/genética
8.
Proc Natl Acad Sci U S A ; 114(40): E8440-E8447, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923946

RESUMO

Natural killer (NK) cells express MHC class I (MHC-I)-specific receptors, such as Ly49A, that inhibit killing of cells expressing self-MHC-I. Self-MHC-I also "licenses" NK cells to become responsive to activating stimuli and regulates the surface level of NK-cell inhibitory receptors. However, the mechanisms of action resulting from these interactions of the Ly49s with their MHC-I ligands, particularly in vivo, have been controversial. Definitive studies could be derived from mice with targeted mutations in inhibitory Ly49s, but there are inherent challenges in specifically altering a single gene within a multigene family. Herein, we generated a knock-in mouse with a targeted mutation in the immunoreceptor tyrosine-based inhibitory motif (ITIM) of Ly49A that abolished the inhibitory function of Ly49A in cytotoxicity assays. This mutant Ly49A caused a licensing defect in NK cells, but the surface expression of Ly49A was unaltered. Moreover, NK cells that expressed this mutant Ly49A exhibited an altered inhibitory receptor repertoire. These results demonstrate that Ly49A ITIM signaling is critical for NK-cell effector inhibition, licensing, and receptor repertoire development.


Assuntos
Citotoxicidade Imunológica/imunologia , Genes MHC Classe I/imunologia , Motivo de Inibição do Imunorreceptor Baseado em Tirosina , Células Matadoras Naturais/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/fisiologia , Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Células Cultivadas , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Semelhantes a Lectina de Células NK/genética , Tirosina/metabolismo
9.
Nat Immunol ; 16(11): 1124-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414766

RESUMO

Subsets of innate lymphoid cells (ILCs) reside in the mucosa and regulate immune responses to external pathogens. While ILCs can be phenotypically classified into ILC1, ILC2 and ILC3 subsets, the transcriptional control of commitment to each ILC lineage is incompletely understood. Here we report that the transcription factor Runx3 was essential for the normal development of ILC1 and ILC3 cells but not of ILC2 cells. Runx3 controlled the survival of ILC1 cells but not of ILC3 cells. Runx3 was required for expression of the transcription factor RORγt and its downstream target, the transcription factor AHR, in ILC3 cells. The absence of Runx3 in ILCs exacerbated infection with Citrobacter rodentium. Therefore, our data establish Runx3 as a key transcription factor in the lineage-specific differentiation of ILC1 and ILC3 cells.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Subunidade alfa 3 de Fator de Ligação ao Core/deficiência , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Infecções por Enterobacteriaceae/etiologia , Infecções por Enterobacteriaceae/imunologia , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Subpopulações de Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA