Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 388, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209813

RESUMO

Plasmalogens are glycerophospholipids with a vinyl ether bond that confers unique properties. Recent identification of the gene encoding PEDS1, the desaturase generating the vinyl ether bond, enables evaluation of the role of plasmalogens in health and disease. Here, we report that Peds1-deficient zebrafish larvae display delayed development, increased basal inflammation, normal hematopoietic stem and progenitor cell emergence, and cell-autonomous myeloid cell apoptosis. In a sterile acute inflammation model, Peds1-deficient larvae exhibited impaired inflammation resolution and tissue regeneration, increased interleukin-1ß and NF-κB expression, and elevated ROS levels at the wound site. Abnormal immune cell recruitment, neutrophil persistence, and fewer but predominantly pro-inflammatory macrophages were observed. Chronic skin inflammation worsened in Peds1-deficient larvae but was mitigated by exogenous plasmalogen, which also alleviated hyper-susceptibility to bacterial infection, as did pharmacological inhibition of caspase-3 and colony-stimulating factor 3-induced myelopoiesis. Overall, our results highlight an important role for plasmalogens in myeloid cell biology and inflammation.

2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175698

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.


Assuntos
Dermatite Atópica , Psoríase , Animais , Humanos , Inflamação , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Psoríase/etiologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA