Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605320

RESUMO

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Assuntos
Fertilizantes , Zea mays , Nitrogênio/análise , Dióxido de Carbono , Agricultura , Solo
2.
Environ Res ; 249: 118345, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331147

RESUMO

Strategies seeking to increase the use efficiency of nitrogen (N) fertilizers and that benefit plant growth through multiple mechanisms can reduce production costs and contribute to more sustainable agriculture free of polluting residues. Under controlled conditions, we investigated the compatibility between foliar inoculation with an endophytic diazotrophic bacterium (Herbaspirillum seropedicae HRC54) at control and low, medium and high N fertilization levels (0, 25, 50 and 100 mg of N kg-1 as urea, respectively) in Marandu palisadegrass. Common procedures in our research field (biometric and nutritional assessments) were combined with isotopic techniques (natural abundance - δ15N‰ and 15N isotope dilution) and root scanning to determine the contribution of fixed N and recovery of N fertilizer by the grass. Overall, the combined use of 15N isotopic techniques revealed that inoculation not only improved the recovery of applied N-urea from the soil but also provided fixed nitrogen to Marandu palisade grass, resulting in an increase in the total accumulated N. When inoculated plants grew at control and low levels of N, a positive cascade effect encompassing root growth stimulation (nodes of smaller diameter roots), better soil and fertilizer resource exploitation and increased forage production was observed. In contrast, increasing N reduced the contributions of N fixed by H. seropedicae from 21.5% at the control level to 8.6% at the high N level. Given the minimal to no observed growth promotion, this condition was deemed inhibitory to the positive effects of H. seropedicae. We discuss how to make better use of H. seropedicae inoculation in Marandu palisadegrass, albeit on a small scale, thus contributing to a more rational and efficient use of N fertilizers. Finally, we pose questions for future investigations based on 15N isotopic techniques under field conditions, which have great applicability potential.


Assuntos
Fertilizantes , Herbaspirillum , Isótopos de Nitrogênio , Nitrogênio , Raízes de Plantas , Herbaspirillum/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Poaceae/microbiologia , Poaceae/metabolismo , Poaceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA