Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Psychiatr Res ; 164: 329-334, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393798

RESUMO

Bipolar disorder (BD) presents with a progressive course in a subset of patients. However, our knowledge of molecular changes in older BD is limited. In this study, we examined gene expression changes in the hippocampus of BD from the Biobank of Aging Studies to identify genes of interest that warrant further exploration. RNA was extracted from the hippocampus from 11 subjects with BD and 11 age and sex-matched controls. Gene expression data was generated using the SurePrint G3 Human Gene Expression v3 microarray. Rank feature selection was performed to identify a subset of features that can optimally differentiate BD and controls. Genes ranked in the top 0.1% with log2 fold change >1.2 were identified as genes of interest. Average age of the subjects was 64 years old; duration of disease was 21 years and 82% were female. Twenty-five genes were identified, of which all but one was downregulated in BD. Of these, CNTNAP4, MAP4, SLC4A1, COBL, and NEURL4 had been associated with BD and other psychiatric conditions in previous studies. We believe our findings have identified promising targets to inform future studies aiming to understand the pathophysiology of BD in later life.


Assuntos
Transtorno Bipolar , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Análise em Microsséries , Regulação da Expressão Gênica , Expressão Gênica/genética , Hipocampo/metabolismo
2.
Dis Model Mech ; 11(1)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29196444

RESUMO

Complex febrile seizures during infancy constitute an important risk factor for development of epilepsy. However, little is known about the alterations induced by febrile seizures that make the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene coexpression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day (P) 11 and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene coexpression network analysis was used to characterize modules of coexpressed genes, as these modules might contain genes with similar functions. The transcriptome analysis pipeline consisted of building gene coexpression networks, identifying network modules and hubs, performing gene-trait correlations and examining changes in module connectivity. Modules were functionally enriched to identify functions associated with HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, such as Wnt, Hippo, Notch, Jak-Stat and Mapk. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as 1 day after HS. These results suggest that HS trigger transcriptional alterations that could lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, making the brain prone to epileptic activity.


Assuntos
Região CA3 Hipocampal/metabolismo , Redes Reguladoras de Genes , Convulsões Febris/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hipertermia Induzida , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA