Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Immunol ; 24(11): 1792-1793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813966
2.
Cell ; 186(11): 2361-2379.e25, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37192619

RESUMO

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.


Assuntos
Antineoplásicos , Espécies Reativas de Oxigênio , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Núcleo Celular/metabolismo , Humanos
3.
bioRxiv ; 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36945474

RESUMO

Multiple chemotherapies are proposed to cause cell death in part by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs exactly how the resultant ROS function and are sensed is poorly understood. In particular, it's unclear which proteins the ROS modify and their roles in chemotherapy sensitivity/resistance. To answer these questions, we examined 11 chemotherapies with an integrated proteogenomic approach identifying many unique targets for these drugs but also shared ones including ribosomal components, suggesting one mechanism by which chemotherapies regulate translation. We focus on CHK1 which we find is a nuclear H 2 O 2 sensor that promotes an anti-ROS cellular program. CHK1 acts by phosphorylating the mitochondrial-DNA binding protein SSBP1, preventing its mitochondrial localization, which in turn decreases nuclear H 2 O 2 . Our results reveal a druggable nucleus-to-mitochondria ROS sensing pathway required to resolve nuclear H 2 O 2 accumulation, which mediates resistance to platinum-based chemotherapies in ovarian cancers.

4.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797499

RESUMO

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Assuntos
Pirimidinas , Ciclo Celular , Diferenciação Celular
5.
Sci Immunol ; 7(77): eabp9553, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36332011

RESUMO

Resident T lymphocytes (TRM) protect tissues during pathogen reexposure. Although TRM phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103+ T cells (a marker of TRM cells) and the other to specifically deplete CD103- T cells. Using these models, we observed that intestinal CD103+ T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103+ T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103+ resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103+ T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103- precursors. Moreover, in contrast to CD103- cells, which require antigen plus inflammation for their activation, CD103+ TRM became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103+ resident memory T cells lack secondary expansion potential and require CD103- precursors for their long-term maintenance.


Assuntos
Coinfecção , Memória Imunológica , Camundongos , Animais , Reinfecção , Linfócitos T CD8-Positivos , Células T de Memória , Inflamação
6.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032638

RESUMO

T cell receptor (TCR) stimulation leads to the expression of the transcription factor thymocyte selection-associated high-mobility group box (TOX). Prolonged TCR signaling, such as encountered during chronic infections or in tumors, leads to sustained TOX expression, which is required for the induction of a state of exhaustion or dysfunction. Although CD8+ memory T (Tmem) cells in mice typically do not express TOX at steady state, some human Tmem cells express TOX but appear fully functional. This seeming discrepancy between mouse and human T cells has led to the speculation that TOX is differentially regulated between these species, which could complicate the interpretation of preclinical mouse model studies. We report here that, similar to TCR-mediated signals, inflammatory cytokines are also sufficient to increase TOX expression in human and mouse Tmem cells. Thus, TOX expression is controlled by the environment, which provides an explanation for the different TOX expression patterns encountered in T cells isolated from specific pathogen-free laboratory mice versus humans. Finally, we report that TOX is not necessary for cytokine-driven expression of programmed cell death 1. Overall, our data highlight that the mechanisms regulating TOX expression are conserved across species and indicate that TOX expression reflects a T cell's activation state and does not necessarily correlate with T cell dysfunction.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Inflamação/metabolismo , Animais , Citocinas/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
7.
8.
Sci Adv ; 5(12): eaaw1715, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844658

RESUMO

Follicular helper T (TFH) cells are essential for generating protective humoral immunity. To date, microRNAs (miRNAs) have emerged as important players in regulating TFH cell biology. Here, we show that loss of miR-23~27~24 clusters in T cells resulted in elevated TFH cell frequencies upon different immune challenges, whereas overexpression of this miRNA family led to reduced TFH cell responses. Mechanistically, miR-23~27~24 clusters coordinately control TFH cells through targeting a network of genes that are crucial for TFH cell biology. Among them, thymocyte selection-associated HMG-box protein (TOX) was identified as a central transcription regulator in TFH cell development. TOX is highly up-regulated in both mouse and human TFH cells in a BCL6-dependent manner. In turn, TOX promotes the expression of multiple molecules that play critical roles in TFH cell differentiation and function. Collectively, our results establish a key miRNA regulon that maintains optimal TFH cell responses for resultant humoral immunity.


Assuntos
Diferenciação Celular/genética , Imunidade Humoral/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T/imunologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Imunidade Humoral/imunologia , Ativação Linfocitária/imunologia , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA