Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451875

RESUMO

In brief: The impact of adenomyosis on reproductive health needs to be fully understood. By using a murine model, this study provides novel insights into the nuanced mechanisms associated with fertility challenges and offers a foundation for targeted interventions. Abstract: This study investigates the intricate relationship between adenomyosis and reproductive health using a murine model, offering novel insights into this prevalent gynecological disorder. Adenomyosis, characterized by the invasive growth of endometrial tissue into the myometrium, is believed to negatively impact fertility. However, the challenge lies in disentangling this influence, as adenomyosis often coexists with other gynecological diseases. A tamoxifen-induced mice model presents a significant advantage by enabling the specific study of adenomyosis, devoid of confounding influences of concurrent gynecological diseases such as endometriosis. Focusing exclusively on adenomyosis, our study aims to elucidate pathogenic mechanisms underlying fertility issues, focusing on estrous cyclicity, ovarian follicle development, and overall fertility. Our findings uncover disruptions in estrous cyclicity, characterized by an increased duration of time spent in the estrus phase in adenomyosis-induced mice. These disturbances are potentially linked to observed compromised folliculogenesis and the remarkable reduction in litter number and size in mice affected by adenomyosis. Moreover, this study unveils potential drivers of subfertility such as progesterone resistance and altered endometrial receptivity. Within the uteri of mice with adenomyosis, reduced expression of the progesterone receptor and a decreased expression of two implantation-related markers (HoxA10 and integrin ß3) were observed. This comprehensive examination sheds light on the nuanced complexities of adenomyosis-associated reproductive challenges, providing a foundation for targeted interventions in addressing fertility issues related to this disease.


Assuntos
Adenomiose , Endometriose , Endométrio/anormalidades , Doenças Uterinas , Feminino , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Doenças Uterinas/metabolismo , Endométrio/metabolismo , Endometriose/patologia , Fertilidade
2.
Medicina (Kaunas) ; 59(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629764

RESUMO

Background and Objectives: Ovarian tissue cryopreservation followed by autotransplantation (OTCTP) is currently the only fertility preservation option for prepubertal patients. Once in remission, the autotransplantation of frozen/thawed tissue is performed when patients want to conceive. A major issue of the procedure is follicular loss directly after grafting mainly due to follicle activation. To improve follicular survival during the OTCTP procedure, we inhibited the mTOR pathway involved in follicle activation using rapamycin, an mTOR inhibitor. Next, we compared two different in vivo models of transplantation: the recently described non-invasive heterotopic transplantation model between the skin layers of the ears, and the more conventional and invasive transplantation under the kidney capsule. Materials and Methods: To study the effects of adding rapamycin during cryopreservation, 4-week-old C57BL/6 mouse ovaries, either fresh, slow-frozen, or slow-frozen with rapamycin, were autotransplanted under the kidney capsule of mice and recovered three weeks later for immunohistochemical (IHC) analysis. To compare the ear with the kidney capsule transplantation model, fresh 4-week-old C57BL/6 mouse ovaries were autotransplanted to either site, followed by an injection of either LY294002, a PI3K inhibitor, vehicle control, or neither, and these were recovered three weeks later for IHC analysis. Results: Rapamycin counteracts cryopreservation-induced follicle proliferation, as well as AKT and mTOR pathway activation, in ovaries autotransplanted for three weeks under the kidney capsule of mice. Analyses of follicle proliferation, mTOR activation, and the effects of LY294002 treatment were similar in transplanted ovaries using either the ear or kidney capsule transplantation model. Conclusions: By adding rapamycin during the OTCTP procedure, we were able to transiently maintain primordial follicles in a quiescent state. This is a promising method for improving the longevity of the ovarian graft. Furthermore, both the ear and kidney capsule transplantation models were suitable for investigating follicle activation and proliferation and pharmacological strategies.


Assuntos
Ovário , Sirolimo , Camundongos , Animais , Feminino , Camundongos Endogâmicos C57BL , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Fosfatidilinositol 3-Quinases , Criopreservação , Serina-Treonina Quinases TOR
3.
J Extracell Biol ; 2(7): e103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38939074

RESUMO

The objectives of the present study were to determine whether obesity impacts human decidualization and the endometrial control of trophoblast invasion (both of which are required for embryo implantation) and evaluate the potential involvement of endometrial extracellular vesicles (EVs) in the regulation of these physiological processes. Using primary human cell cultures, we first demonstrated that obesity is associated with significantly lower in vitro decidualization of endometrial stromal cells (ESCs). We then showed that a trophoblastic cell line's invasive ability was greater in the presence of conditioned media from cultures of ESCs from obese women. The results of functional assays indicated that supplementation of the culture medium with EVs from nonobese women can rescue (at least in part) the defect in in vitro decidualization described in ESCs from obese women. Furthermore, exposure to endometrial EVs from obese women (vs. nonobese women) was associated with significantly greater invasive activity by HTR-8/SVneo cells. Using mass-spectrometry-based quantitative proteomics, we found that EVs isolated from uterine supernatants of biopsies from obese women (vs. nonobese women) presented a molecular signature focused on cell remodelling and angiogenesis. The proteomics analysis revealed two differentially expressed proteins (fibronectin and angiotensin-converting enzyme) that might be involved specifically in the rescue of the decidualization capacity in ESCs from obese women; both of these proteins are abundantly present in endometrial EVs from nonobese women, and both are involved in the decidualization process. In conclusion, our results provided new insights into the endometrial EVs' pivotal role in the poor uterine receptivity observed in obese women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA