Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gigascience ; 8(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127811

RESUMO

BACKGROUND: Tracking and predicting the growth performance of plants in different environments is critical for predicting the impact of global climate change. Automated approaches for image capture and analysis have allowed for substantial increases in the throughput of quantitative growth trait measurements compared with manual assessments. Recent work has focused on adopting computer vision and machine learning approaches to improve the accuracy of automated plant phenotyping. Here we present PS-Plant, a low-cost and portable 3D plant phenotyping platform based on an imaging technique novel to plant phenotyping called photometric stereo (PS). RESULTS: We calibrated PS-Plant to track the model plant Arabidopsis thaliana throughout the day-night (diel) cycle and investigated growth architecture under a variety of conditions to illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke computer vision algorithms and assessed available deep neural network architectures to automate the segmentation of rosettes and individual leaves, and extract basic and more advanced traits from PS-derived data, including the tracking of 3D plant growth and diel leaf hyponastic movement. Furthermore, we have produced the first PS training data set, which includes 221 manually annotated Arabidopsis rosettes that were used for training and data analysis (1,768 images in total). A full protocol is provided, including all software components and an additional test data set. CONCLUSIONS: PS-Plant is a powerful new phenotyping tool for plant research that provides robust data at high temporal and spatial resolutions. The system is well-suited for small- and large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Fotometria/métodos , Desenvolvimento Vegetal , Arabidopsis , Imageamento Tridimensional/economia , Imageamento Tridimensional/normas , Fenótipo , Fotometria/economia , Fotometria/normas
2.
Plant Methods ; 15: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30697329

RESUMO

BACKGROUND: The use of spectral imaging within the plant phenotyping and breeding community has been increasing due its utility as a non-invasive diagnostic tool. However, there is a lack of imaging systems targeted specifically at plant science duties, resulting in low precision for canopy-scale measurements. This study trials a prototype multispectral system designed specifically for plant studies and looks at its use as an early detection system for visually asymptomatic disease phases, in this case Pyrenopeziza brassicae in Brassica napus. The analysis takes advantage of machine learning in the form of feature selection and novelty detection to facilitate the classification. An initial study into recording the morphology of the samples is also included to allow for further improvement to the system performance. RESULTS: The proposed method was able to detect light leaf spot infection with 92% accuracy when imaging entire oilseed rape plants from above, 12 days after inoculation and 13 days before the appearance of visible symptoms. False colour mapping of spectral vegetation indices was used to quantify disease severity and its distribution within the plant canopy. In addition, the structure of the plant was recorded using photometric stereo, with the output influencing regions used for diagnosis. The shape of the plants was also recorded using photometric stereo, which allowed for reconstruction of the leaf angle and surface texture, although further work is needed to improve the fidelity due to uneven lighting distributions, to allow for reflectance compensation. CONCLUSIONS: The ability of active multispectral imaging has been demonstrated along with the improvement in time taken to detect light leaf spot at a high accuracy. The importance of capturing structural information is outlined, with its effect on reflectance and thus classification illustrated. The system could be used in plant breeding to enhance the selection of resistant cultivars, with its early and quantitative capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA