Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
BMJ Open ; 13(5): e068104, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169499

RESUMO

OBJECTIVES: This study aims to explore the impact of myasthenia gravis (MG) - in terms of treatments, side effects, comorbidities, psychological health and work or study- in the real world from a patient perspective. DESIGN AND PARTICIPANTS: This is a prospective, observational, digital, longitudinal study. Adults diagnosed with MG residing in the USA, Japan, Germany, the UK, Italy, Spain or Canada were eligible to participate in the study. There were no other exclusion criteria. Participants used a bespoke smartphone application to confirm eligibility, provide consent and enter data about their MG into a profile, a tracker to record MG-related events and a series of patient-reported outcome instruments. 1693 participants completed at least 1 survey and were included in this analysis. RESULTS: Results are presented as a percentage of respondents to each survey question. The study population was largely female (69% of 1586 respondents), with an average age of 49.9 years (SD 14.8). In the previous 12 months, 83.7% of 1412 respondents confirmed that they had received one or more routine treatments for MG, and 67.1% of 255 respondents confirmed that they had experienced a side effect in the previous month. Commonly experienced comorbidities reported by 966 respondents were thyroid problems, hypertension and anxiety, experienced by 37.5%, 31.4% and 28.0% of respondents, respectively.According to 889 respondents to the Hospital Anxiety and Depression Scale survey, 52.7% and 43.2% had a score indicative of at least mild anxiety and mild depression, respectively. Of 257 respondents, 33.0% reported experiencing a work or study impact in the past month. CONCLUSIONS: This analysis of baseline characteristics of the MyRealWorld MG study population indicates that, despite current treatments, patients experience notable burden. Further scheduled analyses will develop a longitudinal picture of MG burden. TRIAL REGISTRATION NUMBER: NCT04176211.


Assuntos
Miastenia Gravis , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Longitudinais , Miastenia Gravis/terapia , Miastenia Gravis/tratamento farmacológico , Inquéritos e Questionários , Ansiedade/epidemiologia , Estudos Prospectivos
2.
Front Immunol ; 14: 1083218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793723

RESUMO

Myasthenia Gravis (MG) is a neurological autoimmune disease characterized by disabling muscle weaknesses due to anti-acetylcholine receptor (AChR) autoantibodies. To gain insight into immune dysregulation underlying early-onset AChR+ MG, we performed an in-depth analysis of peripheral mononuclear blood cells (PBMCs) using mass cytometry. PBMCs from 24 AChR+ MG patients without thymoma and 16 controls were stained with a panel of 37 antibodies. Using both unsupervised and supervised approaches, we observed a decrease in monocytes, for all subpopulations: classical, intermediate, and non-classical monocytes. In contrast, an increase in innate lymphoid cells 2 (ILC2s) and CD27- γδ T cells was observed. We further investigated the dysregulations affecting monocytes and γδ T cells in MG. We analyzed CD27- γδ T cells in PBMCs and thymic cells from AChR+ MG patients. We detected the increase in CD27- γδ T cells in thymic cells of MG patients suggesting that the inflammatory thymic environment might affect γδ T cell differentiation. To better understand changes that might affect monocytes, we analyzed RNA sequencing data from CD14+ PBMCs and showed a global decrease activity of monocytes in MG patients. Next, by flow cytometry, we especially confirmed the decrease affecting non-classical monocytes. In MG, as for other B-cell mediated autoimmune diseases, dysregulations are well known for adaptive immune cells, such as B and T cells. Here, using single-cell mass cytometry, we unraveled unexpected dysregulations for innate immune cells. If these cells are known to be crucial for host defense, our results demonstrated that they could also be involved in autoimmunity.


Assuntos
Miastenia Gravis , Doenças do Sistema Nervoso , Neoplasias do Timo , Humanos , Imunidade Inata , Linfócitos , Receptores Colinérgicos , Autoanticorpos
3.
J Neuroinflammation ; 20(1): 9, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639663

RESUMO

Acetylcholine receptor (AChR) myasthenia gravis (MG) is a chronic autoimmune disease characterized by muscle weakness. The AChR+ autoantibodies are produced by B-cells located in thymic ectopic germinal centers (eGC). No therapeutic approach is curative. The inflammatory IL-23/Th17 pathway is activated in the thymus as well as in the blood and the muscle, contributing to the MG pathogenic events. We aimed to study a potential new therapeutic approach that targets IL-23p19 (IL-23) in the two complementary preclinical MG models: the classical experimental MG mouse model (EAMG) based on active immunization and the humanized mouse model featuring human MG thymuses engrafted in NSG mice (NSG-MG). In both preclinical models, the anti-IL-23 treatment ameliorated MG clinical symptoms. In the EAMG, the treatment reduced IL-17 related inflammation, anti-AChR IgG2b antibody production, activated transduction pathway involved in muscle regeneration and ameliorated the signal transduction at the neuromuscular junction. In the NSG-MG model, the treatment reduced pathogenic Th17 cell population and expression of genes involved in eGC stabilization and B-cell development in human MG thymus biopsies. Altogether, these data suggest that a therapy targeting IL-23p19 may promote significant clinical ameliorations in AChR+ MG disease due to concomitant beneficial effects on the thymus and skeletal muscle defects.


Assuntos
Interleucina-23 , Miastenia Gravis Autoimune Experimental , Camundongos , Humanos , Animais , Subunidade p19 da Interleucina-23 , Receptores Colinérgicos , Junção Neuromuscular/patologia , Autoanticorpos
4.
BMJ Open ; 13(1): e066445, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720569

RESUMO

OBJECTIVES: Myasthenia gravis (MG) is a rare, chronic, autoimmune neuromuscular disease which can affect functional and mental aspects of health and health-related quality of life (HRQoL). This study aims to obtain detailed knowledge of the impact of MG on HRQoL in a broad population from the perspective of the patient. DESIGN: Prospective, observational, digital, longitudinal real-world study. SETTING: Adult patients with MG from seven countries (USA, Japan, Germany, UK, Italy, Spain and Canada) downloaded a mobile application onto their phones and entered data about themselves and their MG. OUTCOME MEASURES: Data was collected using the following general and disease-specific patient-reported outcome measurements: EuroQol 5 Domains Health-Related Quality of Life Questionnaire (EQ-5D-5L), Myasthenia Gravis Activities of Daily Living (MG-ADL), Myasthenia Gravis Quality of Life 15-item revised scale (MG-QoL-15r), Hospital Anxiety and Depression Scale (HADS) and Health Utilities Index III (HUI3). Patients were categorised by their self-assessed Myasthenia Gravis Foundation of America (MGFA) class (I-V). RESULTS: Baseline results of 841 participants (mean age 47 years, 70% women) are reported . The distribution across the MGFA classes was: 13.9%, 31.0%, 38.1%, 15.5% and 1.6% for classes I-V. The MGFA class was a strong predictor of all aspects of HRQoL, measured with disease-specific and with generic instruments. The domains in which patients with MG most frequently mentioned problems were usual activities, anxiety and depression, tiredness, breathing and vision. The mean total MG-ADL Score was positively associated with increasing MGFA classes: 2.7, 4.4, 6.3 and 8.4 for MGFA classes I-IV. Mean baseline EQ-5D-5L utility was also associated with MGFA classes and was 0.817, 0.766, 0.648 and 0.530 for MGFA class I-IV. CONCLUSIONS: MG has a large impact on key aspects of health and HRQoL. The impact of this disease increases substantially with increasing disease severity.


Assuntos
Miastenia Gravis , Qualidade de Vida , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Atividades Cotidianas , Estudos Prospectivos , Medidas de Resultados Relatados pelo Paciente
5.
Ann Neurol ; 93(4): 643-654, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36571580

RESUMO

OBJECTIVE: Myasthenia gravis (MG) is a neuromuscular disease mediated by antibodies against the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG and is characterized by a type I interferon (IFN) signature linked to IFN-ß. We investigated if AChR-MG was characterized by an IFN-I signature in the blood, and further investigated the chronic thymic IFN-I signature. METHODS: Serum levels of IFN-ß and IFN-α subtypes, and mRNA expression for IFN-I subtypes and IFN-stimulated genes in peripheral mononuclear blood cells (PBMCs) were analyzed. The contribution of endogenous nucleic acids in thymic expression of IFN-I subtypes was investigated in human thymic epithelial cell cultures and the mouse thymus. By immunohistochemistry, thymic CD68+ and CD163+ macrophages were analyzed in AChR-MG. To investigate the impact of a decrease in thymic macrophages, mice were treated with an anti-CSF1R antibody. RESULTS: No IFN-I signature was observed in the periphery emphasizing that the IFN-I signature is restricted to the MG thymus. Molecules mimicking endogenous dsDNA signalization (Poly(dA:dT) and 2'3'-cGAMP), or dexamethasone-induced necrotic thymocytes increased IFN-ß and α-AChR expression by thymic epithelial cells, and in the mouse thymus. A significant decrease in thymic macrophages was demonstrated in AChR-MG. In mice, a decrease in thymic macrophages led to an increase of necrotic thymocytes associated with IFN-ß and α-AChR expression. INTERPRETATION: These results suggest that the decrease of thymic macrophages in AChR-MG impairs the elimination of apoptotic thymocytes favoring the release of endogenous nucleic acids from necrotic thymocytes. In this inflammatory context, thymic epithelial cells may overexpress IFN-ß, which specifically induces α-AChR, resulting in self-sensitization and thymic changes leading to AChR-MG. ANN NEUROL 2023;93:643-654.


Assuntos
Miastenia Gravis , Ácidos Nucleicos , Humanos , Camundongos , Animais , Timo/metabolismo , Receptores Colinérgicos , Macrófagos/metabolismo
6.
Cells ; 11(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406782

RESUMO

Myasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus. The origin of this chronic IFN-I expression in the thymus is not yet defined. IFN-I subtypes are normally produced in response to viral infection. However, genetic diseases called interferonopathies are associated with an aberrant chronic production of IFN-I defined as sterile inflammation. Some systemic autoimmune diseases also share common features with interferonopathies. This review aims to analyze the pathogenic role of IFN-I in these diseases as compared to AChR-MG in order to determine if AChR-MG could be an acquired interferonopathy.


Assuntos
Doença Enxerto-Hospedeiro , Miastenia Gravis , Timoma , Neoplasias do Timo , Autoanticorpos , Humanos , Receptores Colinérgicos , Timoma/complicações , Timoma/patologia
7.
J Neuroinflammation ; 18(1): 270, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789272

RESUMO

Predisposition to autoimmunity and inflammatory disorders is observed in patients with fragile X-associated syndromes. These patients have increased numbers of CGG triplets in the 5' UTR region of FMR1 (Fragile X Mental Retardation 1) gene, that affects its expression. FMR1 is decreased in the thymus of myasthenia gravis (MG) patients, a prototypical autoimmune disease. We thus analyzed the number of CGG triplets in FMR1 in MG, and explored the regulatory mechanisms affecting thymic FMR1 expression. We measured the number of CGGs using thymic DNA from MG and controls, but no abnormalities in CGGs were found in MG that could explain thymic decrease of FMR1. We next analyzed by RT-PCR the expression of FMR1 and its transcription factors in thymic samples, and in thymic epithelial cell cultures in response to inflammatory stimuli. In control thymuses, FMR1 expression was higher in males than females, and correlated with CTCF (CCCTC-binding factor) expression. In MG thymuses, decreased expression of FMR1 was correlated with both CTCF and MAX (Myc-associated factor X) expression. Changes in FMR1 expression were supported by western blot analyses for FMRP. In addition, we demonstrated that FMR1, CTCF and MAX expression in thymic epithelial cells was also sensitive to inflammatory signals. Our results suggest that FMR1 could play a central role in the thymus and autoimmunity. First, in relation with the higher susceptibility of females to autoimmune diseases. Second, due to the modulation of its expression by inflammatory signals that are known to be altered in MG thymuses.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/biossíntese , Miastenia Gravis/metabolismo , Timo/metabolismo , Adolescente , Adulto , Autoimunidade/genética , Fator de Ligação a CCCTC/biossíntese , Fator de Ligação a CCCTC/genética , Células Cultivadas , DNA/química , DNA/genética , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
8.
BMJ Open ; 11(7): e048198, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285010

RESUMO

INTRODUCTION: Myasthenia gravis (MG) is a rare, chronic, autoimmune disease, mediated by immunoglobulin G antibodies, which causes debilitating muscle weakness. As with most rare diseases, there is little patient-reported data with which to understand and address patient needs. This study explores the impact of MG in the real world from the patient perspective. METHODS AND ANALYSIS: This is a 2-year prospective, observational, digital, longitudinal study of adults with MG, resident in the following countries: the USA, Japan, Germany, France, the UK, Italy, Spain, Canada and Belgium. The planned sample size is 2000. Recruitment will be community based, via patient advocacy groups, social media and word of mouth. Participants will use a smartphone application (app) to check eligibility, provide consent and contribute data. Planned data entry is as follows: (1) personal profile on enrollment-covering demographics, MG characteristics and previous care; (2) monthly event tracker-current treatments, healthcare visits, treatment-related adverse events, productivity losses; (3) monthly selection of validated generic and disease-specific patient-reported outcomes instruments: EQ-5D-5L, Myasthenia Gravis Activities of Daily Living, Myasthenia Gravis Quality of Life 15-item revised scale, Hospital Anxiety and Depression Scale and Health Utilities Index III. Analyses are planned for when the study has been running in most countries for approximately 6, 12, 18 and 24 months. ETHICS AND DISSEMINATION: The study protocol has been reviewed and granted ethics approval by Salus IRB for participants resident in the following countries: Germany, the UK and the US. Local ethics approval is being sought for the following study countries: Belgium, Canada, France, Italy, Japan and Spain. Study results will be communicated to the public and participants via conference presentations and journal publications, as well as regular email, social media and in-application communication. TRIAL REGISTRATION NUMBER: NCT04176211.


Assuntos
Atividades Cotidianas , Miastenia Gravis , Adulto , Bélgica , Canadá , França , Alemanha , Humanos , Itália , Japão , Estudos Longitudinais , Estudos Observacionais como Assunto , Estudos Prospectivos , Qualidade de Vida , Espanha , Resultado do Tratamento
9.
J Neuroinflammation ; 17(1): 294, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032631

RESUMO

BACKGROUND: Myasthenia gravis (MG) is a rare autoimmune disease mainly mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. The thymus is the effector organ, and its removal alleviates the symptoms of the disease. In the early-onset form of MG, the thymus displays functional and morphological abnormalities such as B cell infiltration leading to follicular hyperplasia, and the production of AChR antibodies. Type-I interferon (IFN-I), especially IFN-ß, is the orchestrator of thymic changes observed in MG. As Dicer and miR-29 subtypes play a role in modulating the IFN-I signalization in mouse thymus, we investigated their expression in MG thymus. METHODS: The expression of DICER and miR-29 subtypes were thoroughly investigated by RT-PCR in human control and MG thymuses, and in thymic epithelial cells (TECs). Using miR-29a/b-1-deficient mice, with lower miR-29a/b-1 expression, we investigated their susceptibility to experimental autoimmune MG (EAMG) as compared to wild-type mice. RESULTS: DICER mRNA and all miR-29 subtypes were down-regulated in the thymus of MG patients and DICER expression was correlated with the lower expression of miR-29a-3p. A decreased expression of miR-29 subtypes was similarly observed in MG TECs; a decrease also induced in TECs upon IFN-ß treatment. We demonstrated that miR-29a/b-1-deficient mice were more susceptible to EAMG without higher levels of anti-AChR IgG subtypes. In the thymus, if no B cell infiltration was observed, an increased expression of Ifn-ß associated with Baff expression and the differentiation of Th17 cells associated with increased expression of Il-6, Il-17a and Il-21 and decreased Tgf-ß1 mRNA were demonstrated in miR-29a/b-1-deficient EAMG mice. CONCLUSIONS: It is not clear if the decreased expression of miR-29 subtypes in human MG is a consequence or a causative factor of thymic inflammation. However, our results from the EAMG mouse model indicated that a reduction in miR-29a/b1 may contribute to the pathophysiological process involved in MG by favoring the increased expression of IFN-ß and the emergence of pro-inflammatory Th17 cells.


Assuntos
MicroRNAs/biossíntese , Miastenia Gravis Autoimune Experimental/metabolismo , Miastenia Gravis/metabolismo , Adolescente , Adulto , Animais , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miastenia Gravis/genética , Miastenia Gravis/imunologia , Miastenia Gravis Autoimune Experimental/genética , Miastenia Gravis Autoimune Experimental/imunologia , Receptores Colinérgicos/imunologia , Receptores Colinérgicos/metabolismo , Timo/imunologia , Timo/metabolismo , Adulto Jovem
11.
Front Immunol ; 11: 782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435245

RESUMO

The thymus is involved in autoimmune Myasthenia gravis (MG) associated with anti-acetylcholine (AChR) antibodies. In MG, thymic regulatory T cells (Treg) are not efficiently suppressive, and conventional T cells (Tconv) are resistant to suppression. To better understand the specific role of the thymus in MG, we compared the phenotype and function of peripheral and thymic Treg and Tconv from controls and MG patients. Suppression assays with thymic or peripheral CD4 + T cells showed that the functional impairment in MG was more pronounced in the thymus than in the periphery. Phenotypic analysis of Treg showed a significant reduction of resting and effector Treg in the thymus but not in the periphery of MG patients. CD31, a marker lost with excessive immunoreactivity, was significantly reduced in thymic but not blood resting Treg. These results suggest that an altered thymic environment may explain Treg differences between MG patients and controls. Since thymic epithelial cells (TECs) play a major role in the generation of Treg, we co-cultured healthy thymic CD4 + T cells with control or MG TECs and tested their suppressive function. Co-culture with MG TECs consistently hampers regulatory activity, as compared with control TECs, suggesting that MG TECs contribute to the immune regulation defects of MG CD4 + T cells. MG TECs produced significantly higher thymic stromal lymphopoietin (TSLP) than control TECs, and a neutralizing anti-TSLP antibody partially restored the suppressive capacity of Treg derived from co-cultures with MG TECs, suggesting that TSLP contributed to the defect of thymic Treg in MG patients. Finally, a co-culture of MG CD4 + T cells with control TECs restored numbers and function of MG Treg, demonstrating that a favorable environment could correct the immune regulation defects of T cells in MG. Altogether, our data suggest that the severe defect of thymic Treg is at least partially due to MG TECs that overproduce TSLP. The Treg defects could be corrected by replacing dysfunctional TECs by healthy TECs. These findings highlight the role of the tissue environment on the immune regulation.


Assuntos
Células Sanguíneas/imunologia , Células Epiteliais/fisiologia , Miastenia Gravis/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Adolescente , Adulto , Autoanticorpos/metabolismo , Células Cultivadas , Criança , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Homeostase , Humanos , Imunomodulação , Recém-Nascido , Masculino , Receptores Colinérgicos/imunologia , Adulto Jovem , Linfopoietina do Estroma do Timo
12.
Autoimmun Rev ; 19(3): 102468, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927086

RESUMO

In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.


Assuntos
Doenças Autoimunes/imunologia , Disruptores Endócrinos/efeitos adversos , Estrogênios/imunologia , Tolerância Imunológica , Timo/efeitos dos fármacos , Feminino , Humanos , Receptores de Hidrocarboneto Arílico
13.
J Autoimmun ; 106: 102337, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31594658

RESUMO

Thymomas are associated with a very high risk of developing Myasthenia Gravis (MG). Our objectives were to identify histological and biological parameters to allow early diagnosis of thymoma patients susceptible to developing MG. We conducted a detailed retrospective analysis from a patient database, searching for differences between patients with thymoma-associated MG (MGT, n = 409) and thymoma without MG (TOMA, n = 111) in comparison with nonthymomatous MG patients (MG, n = 1246). We also performed multiplex and single molecule arrays to measure the serum levels of cytokines in these groups of patients and controls (n = 14-22). We identified a set of parameters associated with MG development in thymoma patients: 1) detection of anti-acetylcholine receptor (AChR) antibodies, 2) development of B1 or B2 thymoma subtypes, 3) presence of ectopic thymic germinal centers (GCs), 4) local invasiveness of thymoma, and 5) being a woman under 50 years old. Among these parameters, 58.8% of MGT patients displayed GCs with a positive correlation between the number of GCs and anti-AChR titers. By immunohistochemistry, we found thymic GCs in the adjacent tissues of thymomas encircled by high endothelial venules (HEVs) that could favor peripheral cell recruitment. We also clearly associated MG symptoms with higher IFN-γ, IL-1ß and sCD40L serum levels, specifically in MGT patients compared to TOMA patients. Altogether, these analyses allowed the clear identification of histological, in particular the presence of GCs, and biological parameters that would facilitate the evaluation of the probability of the MG outcome postoperatively in thymoma patients.


Assuntos
Centro Germinativo/patologia , Miastenia Gravis/etiologia , Timoma/complicações , Neoplasias do Timo/complicações , Adulto , Autoanticorpos/metabolismo , Ligante de CD40/metabolismo , Feminino , Centro Germinativo/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Estudos Retrospectivos , Fatores de Risco , Timoma/metabolismo , Neoplasias do Timo/metabolismo
14.
Front Immunol ; 10: 539, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984166

RESUMO

Autoimmune Myasthenia gravis (MG) is a chronic neuromuscular disease mainly due to antibodies against the acetylcholine receptor (AChR) at the neuromuscular junction that induce invalidating muscle weaknesses. In early-onset MG, the thymus is the effector organ and is often characterized by B-cell infiltrations leading to ectopic germinal center (GC) development. The microRNA miR-150-5p has been previously characterized as a biomarker in MG due to its increase in the serum of patients and its decrease after thymectomy, correlated with an improvement of symptoms. Here, we investigated the causes and consequences of the miR-150 increase in the serum of early-onset MG patients. We observed that miR-150 expression was upregulated in MG thymuses in correlation with the presence of thymic B cells and showed by in situ hybridization experiments, that miR-150 was mainly expressed by cells of the mantle zone of GCs. However, we did not observe any correlation between the degree of thymic hyperplasia and the serum levels in MG patients. In parallel, we also investigated the expression of miR-150 in peripheral blood mononuclear cells (PBMCs) from MG patients. We observed that miR-150 was down-regulated, especially in CD4+ T cells compared to controls. These results suggest that the increased serum levels of miR-150 could result from a release from activated peripheral CD4+ T cells. Next, we demonstrated that the in vitro treatment of PBMCs with miR-150 or antimiR-150 oligonucleotides, respectively, decreased or increased the expression of one of its major target gene: the proto-oncogene MYB, a well-known actor of hematopoiesis. These results revealed that increased serum levels of miR-150 in MG patients could have a functional effect on PBMCs. We also showed that antimiR-150 caused increased cellular death of CD4+ and CD8+ T cells, along with the overexpression of pro-apoptotic genes targeted by miR-150 suggesting that miR-150 controlled the survival of these cells. Altogether, these results showed that miR-150 could play a role in MG both at the thymic level and in periphery by modulating the expression of target genes and peripheral cell survival.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , MicroRNAs/imunologia , Miastenia Gravis/imunologia , Adolescente , Adulto , Feminino , Centro Germinativo/imunologia , Centro Germinativo/patologia , Humanos , Masculino , Miastenia Gravis/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb/imunologia , Receptores Nicotínicos/imunologia , Timo/imunologia , Timo/patologia
16.
J Autoimmun ; 98: 59-73, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578016

RESUMO

IL-23/Th17 pathway has been identified to sustain inflammatory condition in several autoimmune diseases and therefore being targeted in various therapeutic and effective approaches. Patients affected with autoimmune myasthenia gravis exhibit a disease effector tissue, the thymus, that harbors ectopic germinal centers that sustain production of auto-antibodies, targeting proteins located in the neuromuscular junction, cause of the organ-specific chronic autoimmune disease. The present study aims to investigate the IL-23/Th17 cell pathway in the thymic inflammatory and pathogenic events. We found that thymuses of MG patients displayed overexpression of Interleukin-17, signature cytokine of activated Th17 cells. This activation was sustained by a higher secretion of Interleukin-23 by TEC, in addition to the increased expression of cytokines involved in Th17 cell development. The overexpression of Interleukin-23 was due to a dysregulation of interferon type I pathway. Besides, Interleukin-17 secreted, and Th17 cells were localized around thymic ectopic germinal centers. These cells expressed podoplanin, a protein involved in B-cell maturation and antibody secretion. Finally, production of Interleukin-23 was also promoted by Interleukin-17 secreted itself by Th17 cells, highlighting a chronic loop of inflammation sustained by thymic cell interaction. Activation of the IL-23/Th17 pathway in the thymus of autoimmune myasthenia gravis patients creates an unstoppable loop of inflammation that may participate in ectopic germinal center maintenance. To alleviate the physio-pathological events in myasthenia gravis patients, this pathway may be considered as a new therapeutic target.


Assuntos
Inflamação/imunologia , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Miastenia Gravis/imunologia , Células Th17/imunologia , Timo/metabolismo , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Timo/patologia , Adulto Jovem
17.
Front Neurol ; 10: 1343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920954

RESUMO

Myasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is characterized by muscle fatigability that is very invalidating and can be life-threatening when respiratory muscles are affected. MG is not cured, and symptomatic treatments with acetylcholinesterase inhibitors and immunosuppressors are life-long medications associated with severe side effects (especially glucocorticoids). While the muscle is the ultimate target of the autoimmune attack, its place and role are not thoroughly described, and this mini-review will focus on the cascade of pathophysiologic mechanisms taking place at the NMJ and its consequences on the muscle biology, function, and regeneration in myasthenic patients, at the histological, cellular, and molecular levels. The fine structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular and molecular reactions taking place in the muscle involve several cell types as well as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be altered. Altogether, the studies reported in this review demonstrate that the muscle is not a passive target in MG, but interacts dynamically with its environment in several ways, activating mechanisms of compensation that limit the pathogenic mechanisms of the autoantibodies.

18.
Ann Clin Transl Neurol ; 5(11): 1408-1414, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30480034

RESUMO

We analyzed the number and functionality of regulatory B (Breg) cells in well-defined myasthenia gravis patients. We first showed a decreased number of circulating CD19+ CD24++ CD38++ Breg cells and an altered functionality of Breg cells in untreated myasthenia gravis patients. Next, we demonstrated that the proportion of circulating Breg cells was restored in myasthenia gravis patients after thymectomy, probably as Breg cells could be sequestered in the myasthenia gravis thymus. In contrast, corticosteroid treatments did not restore and decreased even more the proportion of Breg cells in myasthenia gravis patients. These results clearly demonstrated that two distinct immunomodulatory therapies affect differentially Breg cells.

19.
Front Immunol ; 9: 1663, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083154

RESUMO

Thymic epithelial cells are one of the main components of the thymic microenvironment required for T-cell development. In this work, we describe an efficient method free of enzymatic and Facs-sorted methods to culture human medullary thymic epithelial cells without affecting the cell phenotypic, physiologic and functional features. Human medulla thymic epithelial cells (mTECs) are obtained by culturing thymic biopsies explants. After 7 days of primo-culture, mTECs keep their ability to express key molecules involved in immune tolerance processes such as autoimmune regulator, tissue-specific antigens, chemokines, and cytokines. In addition, the cells sensor their cultured environment and consequently adjust their gene expression network. Therefore, we describe and provide a human mTEC model that may be used to test the effect of various molecules on thymic epithelial cell homeostasis and physiology. This method should allow the investigations of the specificities and the knowledge of human mTECs in normal or pathological conditions and therefore discontinue the extrapolations done on the murine models.

20.
Sci Rep ; 8(1): 8118, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789645

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA