Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Tissue Eng Part A ; 30(5-6): 192-203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38019075

RESUMO

In large-volume muscle injuries, widespread damage to muscle fibers and the surrounding connective tissue prevents myogenic progenitor cells (MPCs) from initiating repair. There is a clinical need to rapidly fabricate large muscle tissue constructs for integration at the site of large volume muscle injuries. Most strategies for myotube alignment require microfabricated structures or prolonged orientation times. We utilize the MPC's natural propensity to close gaps across an injury site to guide alignment on collagen I. When MPCs are exposed to an open boundary free of cells, they migrate unidirectionally into the cell-free region and align perpendicular to the original boundary direction. We study the utility of this phenomenon with biotin-streptavidin adhesion to position the cells on the substrate, and then demonstrate the robustness of this strategy with unmodified cells, creating a promising tool for MPC patterning without interrupting their natural function. We preposition MPCs in straight-line patterns separated with small gaps. This temporary positioning initiates the migratory nature of the MPCs to align and form myotubes across the gaps, similar to how they migrate and align with a single open boundary. There is a directional component to the MPC migration perpendicular (90°) to the original biotin-streptavidin surface patterns. The expression of myosin heavy chain, the motor protein of muscle thick filaments, is confirmed through immunocytochemistry in myotubes generated from MPCs in our patterning process, acting as a marker of skeletal muscle differentiation. The rapid and highly specific binding of biotin-streptavidin allows for quick formation of temporary patterns, with MPC alignment based on natural regenerative behavior rather than complex fabrication techniques.


Assuntos
Biotina , Músculo Esquelético , Biotina/metabolismo , Estreptavidina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células-Tronco , Diferenciação Celular , Desenvolvimento Muscular
2.
PLoS One ; 17(11): e0277561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355857

RESUMO

Acute myocardial infarction (AMI) results in weakening of the heart muscle and an increased risk for chronic heart failure. Therapeutic stem cells have been shown to reduce inflammatory signaling and scar tissue expansion, despite most of these studies being limited by poor retention of cells. Gelatin methacrylate (GelMA) coatings have been shown to increase the retention of these therapeutic cells near the infarct. In this work, we evaluate two different potential binding partners for GelMA-coated bone marrow cells (BMCs) and myocardial tissue: the extracellular matrix (ECM) and interstitial non-cardiomyocytes. While cells containing ß1 integrins mediate cell-ECM adhesion in vivo, these cells do not promote binding to our collagen-degraded, GelMA coating. Specifically, microscopic imagining shows that even with high integrin expression, GelMA-coated BMCs do not bind to cells within the myocardium. Alternatively, BMC incubation with decellularized heart tissue results in higher adhesion of coated cells versus uncoated cells supporting our GelMA-ECM binding mode. To further evaluate the ECM binding mode, cells were incubated on slides modified with one of three different major heart ECM components: collagen, laminin, or fibronectin. While all three components promoted higher adhesion than unmodified glass, collagen-coated slides resulted in a significantly higher adhesion of GelMA-coated BMCs over laminin and fibronectin. Incubation with unmodified BMCs confirmed that without a GelMA coating minimal adhesion of BMCs occurred. We conclude that GelMA cellular coatings significantly increase the binding of cells to collagen within the ECM. Our results provide progress towards a biocompatible and easily translatable method to enhance the retention of transplanted cells in human studies.


Assuntos
Gelatina , Infarto do Miocárdio , Humanos , Gelatina/farmacologia , Gelatina/metabolismo , Adesão Celular , Fibronectinas/metabolismo , Laminina/metabolismo , Miocárdio , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Metacrilatos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo
3.
ACS Omega ; 6(27): 17523-17530, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278138

RESUMO

In vitro analysis of primary isolated adult cardiomyocyte physiological processes often involves optical imaging of dye-loaded cells on a glass substrate. However, when exposed to rapid solution changes, primary cardiomyocytes often move to compromise quantitative measures. Improved immobilization of cells to glass would permit higher throughput assays. Here, we engineer the peripheral membrane of cardiomyocytes with biotin to anchor cardiomyocytes to borosilicate glass coverslips functionalized with streptavidin. We use a rat cardiac myoblast cell line to determine general relationships between processing conditions, ligand density on the cell and the glass substrate, cellular function, and cell retention under shear flow. Use of the streptavidin-biotin system allows for more than 80% retention of cardiac myoblasts under conventional rinsing procedures, while unmodified cells are largely rinsed away. The adhesion system enables the in-field retention of cardiac cells during rapid fluid changes using traditional pipetting or a modern microfluidic system at a flow rate of 160 mL/min. Under fluid flow, the surface-engineered primary adult cardiomyocytes are retained in the field of view of the microscope, while unmodified cells are rinsed away. Importantly, the engineered cardiomyocytes are functional following adhesion to the glass substrate, where contractions are readily observed. When applying this adhesion system to cardiomyocyte functional analysis, we measure calcium release transients by caffeine induction at an 80% success rate compared to 20% without surface engineering.

4.
J Biomed Mater Res A ; 109(3): 326-335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32491263

RESUMO

Gelatin coatings are effective in increasing the retention of MSCs injected into the heart and minimizing the damage from acute myocardial infarction (AMI), but early studies suffered from low fractions of the MSCs coated with gelatin. Biotinylation of the MSC surface is a critical first step in the gelatin coating process, and in this study, we evaluated the use of biotinylated cholesterol "lipid insertion" anchors as a substitute for the covalent NHS-biotin anchors to the cell surface. Streptavidin-eosin molecules, where eosin is our photoinitiator, can then be bound to the cell surface through biotin-streptavidin affinity. The use of cholesterol anchors increased streptavidin density on the surface of MSCs further driving polymerization and allowing for an increased fraction of MSCs coated with gelatin (83%) when compared to NHS-biotin (52%). Additionally, the cholesterol anchors increased the uniformity of the coating on the MSC surface and supported greater numbers of coated MSCs even when the streptavidin density was slightly lower than that of an NHS-biotin anchoring strategy. Critically, this improvement in gelatin coating efficiency did not impact cytokine secretion and other critical MSC functions. Proper selection of the cholesterol anchor and the biotinylation conditions supports cellular function and densities of streptavidin on the MSC surface of up to ~105 streptavidin molecules/µm2 . In all, these cholesterol anchors offer an effective path towards the formation of conformal coatings on the majority of MSCs to improve the retention of MSCs in the heart following AMI.


Assuntos
Células Imobilizadas/química , Colesterol/química , Gelatina/química , Células-Tronco Mesenquimais/química , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia
5.
ACS Appl Bio Mater ; 4(2): 1655-1667, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014513

RESUMO

Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.


Assuntos
Sobrevivência Celular/genética , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Animais , Humanos , Camundongos , Polímeros/metabolismo
6.
ACS Appl Bio Mater ; 3(5): 2930-2939, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33225239

RESUMO

Injection into the heart tissue is a direct route for optimally placing mesenchymal stem cells (MSC) to regulate local inflammation following a heart attack. The retention of MSCs at the injection site is severely limited by the fluid flows that rapidly wash cells away and minimize their capacity to modulate cardiac inflammation. To prevent this loss of MSCs and their function, antibody coatings were designed for the surface of MSCs to enhance their adhesion to the inflamed tissue. MSCs were biotinylated, and biotinylated antibodies against intercellular cell adhesion molecules were conjugated to the cell surface through an intermediate layer of streptavidin. MSC surfaces were modified with ~7,000 biotin/µm2 and ~23 antibodies/µm2. The heart tissue injection of antibody-coated MSCs offered a 3-fold increase of cell retention in an infarcted heart over the injection of uncoated MSCs. We supported the mechanism of adhesion through analysis of MSC adhesion to inflamed endothelial cells and also surfaces of purified adhesion molecules on glass under microfluidic shear flow.

7.
Bioprinting ; 182020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32864483

RESUMO

As the demand for organ transplants continues to grow faster than the supply of available donor organs, a new source of functional organs is needed. High resolution high throughput 3D bioprinting is one approach towards generating functional organs for transplantation. For high throughput printing, the need for increased print resolutions (by decreasing printing nozzle diameter) has a consequence: it increases the forces that cause cell damage during the printing process. Here, a novel cell encapsulation method provides mechanical protection from complete lysis of individual living cells during extrusion-based bioprinting. Cells coated in polymers possessing the mechanical properties finely-tuned to maintain size and shape following extrusion, and these encapsulated cells are protected from mechanical lysis. However, the shear forces imposed on the cells during extrusion still cause sufficient damage to compromise the cell membrane integrity and adversely impact normal cellular function. Cellular damage occurred during the extrusion process independent of the rapid depressurization.

8.
Langmuir ; 35(32): 10299-10308, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31291112

RESUMO

3D cell culture and microfluidics both represent powerful tools for replicating critical components of the cell microenvironment; however, challenges involved in the integration of the two and compatibility with standard tissue culture protocols still represent a steep barrier to widespread adoption. Here we demonstrate the use of engineered surface roughness in the form of microfluidic channels to integrate 3D cell-laden hydrogels and microfluidic fluid delivery. When a liquid hydrogel precursor solution is pipetted onto a surface containing open microfluidic channels, the solid/liquid/air interface becomes pinned at sharp edges such that the hydrogel forms the "fourth wall" of the channels upon solidification. We designed Cassie-Baxter microfluidic surfaces that leverage this phenomenon, making it possible to have barrier-free diffusion between the channels and the hydrogel; in addition, sealing is robust enough to prevent leakage between the two components during fluid flow, but the sealing can also be reversed to facilitate recovery of the cell/hydrogel material after culture. This method was used to culture MDA-MB-231 cells in collagen, which remained viable and proliferated while receiving media exclusively through the microfluidic channels over the course of several days.


Assuntos
Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos
9.
J Biol Eng ; 13: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675178

RESUMO

The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized.

10.
Stem Cell Rev Rep ; 15(3): 404-414, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644039

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) and the ensuing ischemic heart disease are approaching an epidemic state. Limited stem cell retention following intracoronary administration has reduced the clinical efficacy of this novel therapy. Polymer based cell coating is biocompatible and has been shown to be safe. Here, we assessed the therapeutic utility of gelatin-based biodegradable cell coatings on bone marrow derived cell retention in ischemic heart. METHODS: Gelatin based cell coatings were formed from the surface-mediated photopolymerization of 3% gelatin methacrylamide and 1% PEG diacrylate. Cell coating was confirmed using a multimodality approach including flow cytometry, imaging flow cytometry (ImageStream System) and immunohistochemistry. Biocompatibility of cell coating, metabolic activity of coated cells, and the effect of cell coating on the susceptibility of cells for engulfment were assessed using in vitro models. Following myocardial infarction and GFP+ BM-derived mesenchymal stem cell transplantation, flow cytometric and immunohistochemical assessment of retained cells was performed. RESULTS: Coated cells are viable and metabolically active with coating degrading within 72 h in vitro. Importantly, cell coating does not predispose bone marrow cells to aggregation or increase their susceptibility to phagocytosis. In vitro and in vivo studies demonstrated no evidence of heightened immune response or increased phagocytosis of coated cells. Cell transplantation studies following myocardial infarction proved the improved retention of coated bone marrow cells compared to uncoated cells. CONCLUSION: Gelation based polymer cell coating is biologically safe and biodegradable. Therapies employing these strategies may represent an attractive target for improving outcomes of cardiac regenerative therapies in human studies.


Assuntos
Células da Medula Óssea , Transplante de Medula Óssea , Gelatina , Infarto do Miocárdio , Miocárdio , Acrilamidas/química , Acrilamidas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Gelatina/química , Gelatina/farmacologia , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia
11.
PLoS One ; 13(1): e0190880, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29309430

RESUMO

Targeted photopolymerization is the basis for multiple diagnostic and cell encapsulation technologies. While eosin is used in conjunction with tertiary amines as a water-soluble photoinitiation system, eosin is not widely sold as a conjugate with antibodies and other targeting biomolecules. Here we evaluate the utility of fluorescein-labeled bioconjugates to photopolymerize targeted coatings on live cells. We show that although fluorescein conjugates absorb approximately 50% less light energy than eosin in matched photopolymerization experiments using a 530 nm LED lamp, appreciable polymer thicknesses can still be formed in cell compatible environments with fluorescein photosensitization. At low photoinitiator density, eosin allows more sensitive initiation of gelation. However at higher functionalization densities, the thickness of fluorescein polymer films begins to rival that of eosin. Commercial fluorescein-conjugated antibodies are also capable of generating conformal, protective coatings on mammalian cells with similar viability and encapsulation efficiency as eosin systems.


Assuntos
Materiais Revestidos Biocompatíveis , Amarelo de Eosina-(YS)/química , Fluoresceína/química , Luz , Polímeros/química , Células A549 , Humanos , Análise Serial de Proteínas , Espectrofotometria Ultravioleta
12.
J Colloid Interface Sci ; 510: 86-94, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28942068

RESUMO

HYPOTHESIS: In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. EXPERIMENTS: We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. FINDINGS: The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings.

13.
Langmuir ; 33(27): 6778-6784, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28605895

RESUMO

Many naturally occurring cells possess an intrinsic ability to cross biological barriers that block conventional drug delivery, and these cells offer a possible mode of active transport across the blood-brain barrier or into the core of tumor masses. While many technologies for the formation of complete, nanoparticle-loaded coatings on cells exist, a complete coating on the cell surface would disrupt the interaction of cells with their environments. To address this issue, cell surface patches that partially cover cell surfaces might provide a superior approach for cell-mediated therapeutic delivery. The goal of this study is to establish a simplified approach to producing polymeric patches of arbitrary shapes on a live cell via surface-mediated photopolymerization. Cell surfaces were nonspecifically labeled with eosin, and polyethylene (glycol) diacrylate (PEGDA) coatings were directed to specific sites using 530 nm irradiation through a chrome-coated photomask. These coatings may entrap drug-loaded or imaging particles. The extent of nonspecific formation of PEGDA hydrogel coatings increased with irradiation time, light intensity, and initiating species; 40 mW/cm2 irradiation for 5 min delivered high-resolution patterns on the surface of A549 cells, and these cells remained viable for 48 h postpatterning with fluorescent nanoparticle-loaded coatings. This work first demonstrated the feasibility of photopatterning polymer patches directly on the surface of cells.


Assuntos
Hidrogéis/química , Animais , Sobrevivência Celular , Humanos , Polietilenoglicóis , Polimerização , Ratos , Soroalbumina Bovina
14.
J Mol Graph Model ; 72: 32-42, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28027509

RESUMO

2'-Hydroxybiphenyl-2-sulfinate (HBPS) desulfinase (DszB) catalyzes the cleavage of the carbon-sulfur bond from HBPS in the final step of microbial 4S pathway desulfurization reactions. DszB is notable for its substrate specificity and exhibits product inhibition, both of which hinder the overall 4S pathway turnover rate. To understand the molecular-level contributions to substrate and inhibitor binding to DszB, we plan to perform molecular dynamic simulations bound to an array of naphthenic molecules and biphenyl analogues of HBPS. However, many of the small molecules we are interested in are not included in standard force field packages, and thus, we must first produce accurate molecular mechanics force fields. Here, we develop and validate CHARMM-compatible force field parameters for the HBPS substrate, the 2-hydroxybiphenyl product, and potential inhibitors including: 2,2'-biphenol, 2-biphenyl carboxylic acid, 1,8-naphthosultam, and 1,8-naphthosultone. The selected molecules represent biphenyl compounds having both a single and double functional group and the planar naphthenic molecule class, all likely present in the oil-rich environment surrounding DszB-producing microorganisms. The Force Field Toolkit (ffTK) in VMD was used to optimize charge, bond distance, angle, and dihedral parameters. Optimized geometries were determined from quantum mechanical calculations. Molecular simulations of the molecules in explicit and implicit water solutions were conducted to assess the abilities of optimized parameters to recapitulate optimized geometries. Calculated infrared (IR) spectra were obtained and compared with experimental IR spectra for validation of the optimized MM parameters.


Assuntos
Compostos de Bifenilo/química , Modelos Moleculares , Compostos de Sulfônio/química , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho , Torção Mecânica
15.
J Phys Chem A ; 120(36): 7101-11, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27552379

RESUMO

Density functional theory calculations have been used to identify the optimum design for a novel, light-responsive ring monomer expected to allow spatial and temporal control of ring-opening metathesis polymerization (ROMP) via light-mediated changes in ring strain energy. The monomer design leverages ring-shaped molecules composed of 4,4'-diaminoazobenzene (ABn) closed by alkene-α,ω-dioic acid linkers. The atomic geometries, formation enthalpies and ring strain energies of azobenzene (AB)-containing rings with various length linkers have been calculated. The AB(2,2) monomer is identified as having optimal properties for light-mediated ROMP, including high thermodynamic stability, low ring strain energy (RSE) with cis-AB, and high RSE with trans-AB. Time-dependent DFT calculations have been used to explore the photoisomerization mechanism of isolated AB and AB-containing rings, and calculations show that trans-to-cis and cis-to-trans photoisomerization of the optimal AB(2,2) ring molecule can be achieved with monochromatic green and blue light, respectively. The AB(2,2) monomer identified here is expected to allow precise, reversible, spatial and temporal light-mediated control of ROMP through AB photoisomerization, and to have promising potential applications in the fabrication of patterned and/or responsive AB-containing polymer materials.

16.
Langmuir ; 32(32): 8034-41, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27463892

RESUMO

The effect of functional group density on protein adsorption is systematically studied to support ongoing efforts in molecular imprinting of surfaces and bulk materials. In these applications, functional commodity chemicals are molded to complement the shape and chemistry of the target molecule. Here, we study the relationship between bovine serum albumin adsorption and ligand density for carboxylate, alcohol, and alkyl terminal groups. Control surfaces consisting of densely packed self-assembled monolayers (SAMs) are contrasted with low-density SAMs formed through thiol-yne chemistry. Direct comparison consistently yielded greater protein adsorption on low-density SAMs than conventional pure component SAMs of the same functional group. Critically, the carboxylate and alcohol low-density SAMS are more hydrophobic than their analogous dense SAMs. Mixed functional group, dense SAMs were formed with alkyl diluents to match the hydrophobicity of the low-density SAMs. Once hydrophobicity is matched, the dense carboxylate and alcohol SAMs have higher adsorption than the low-density SAMs. We conclude (1) surface charge and hydrophobicity trends dominate over surface density contributions; (2) when hydrophobicity is matched, greater adsorption occurs on dense hydrophilic groups than on lower density hydrophilic groups; (3) when hydrophobicity is matched, greater adsorption occurs on lower density hydrophobic groups than on higher density hydrophobic groups.

17.
Langmuir ; 32(22): 5681-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27206735

RESUMO

Fluid biopsies potentially offer a minimally invasive alternative to traditional tissue biopsies for the continual monitoring of metastatic cancer. Current established technologies for isolating circulating tumor cells (CTCs) suffer from poor purity and yield and require fixatives that preclude the collection of viable cells for longitudinal analyses of biological function. Antigen specific lysis (ASL) is a rapid, high-purity method of cell isolation based on targeted protective coatings on antigen-presenting cells and lysis depletion of unprotected antigen-negative cells. In ASL, photoinitiators are specifically labeled on cell surfaces that enable subsequent surface-initiated polymerization. Critically, the significant determinants of process yield have yet to be investigated for this emerging technology. In this work, we show that the labeling density of photoinitiators is strongly correlated with the yield of intact cells during ASL by flow cytometry analysis. Results suggest ASL is capable of delivering ∼25% of targeted cells after isolation using traditional antibody labeling approaches. Monomer formulations of two molecular weights of PEG-diacrylate (Mn ∼ 575 and 3500) are examined. The gelation response during ASL polymerization is also investigated via protein microarray analogues on planar glass. Finally, a density threshold of photoinitiator labeling required for protection during lysis is determined for both monomer formulations. These results indicate ASL is a promising technology for high yield CTC isolation for rare-cell function assays and fluid biopsies.


Assuntos
Antígenos de Neoplasias/química , Carcinoma Pulmonar de Células não Pequenas , Citometria de Fluxo/métodos , Neoplasias Pulmonares , Proteínas de Neoplasias/química , Células Neoplásicas Circulantes , Receptores de Superfície Celular/química , Células A549 , Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/patologia
18.
Breast Cancer (Auckl) ; 9(Suppl 1): 1-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26309407

RESUMO

Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly studied cancer surface markers. Expression levels of the most common markers are quantitated for three breast cancer and two non-small cell lung cancer (NSCLC) lineage models. These levels are contrasted with that present on healthy peripheral blood mononuclear cells (PBMC) for comparison to expected background levels in a fluid biopsy setting. A key feature of this work is establishing a metric of markers per square micrometer. This describes an average marker density on the cell membrane surface, which is a critical metric for emerging isolation strategies. These results serve to extend expression of key tumor markers in a sensitive and dynamic manner beyond traditional positive/negative immunohistochemical staining to guide future fluid biopsy targeting strategies.

19.
ACS Appl Mater Interfaces ; 7(32): 17598-602, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26244409

RESUMO

Cell-based therapies are emerging as the next frontier of medicine, offering a plausible path forward in the treatment of many devastating diseases. Critically, current methods for antigen positive cell sorting lack a high throughput method for delivering ultrahigh purity populations, prohibiting the application of some cell-based therapies to widespread diseases. Here we show the first use of targeted, protective polymer coatings on cells for the high speed enrichment of cells. Individual, antigen-positive cells are coated with a biocompatible hydrogel which protects the cells from a surfactant solution, while uncoated cells are immediately lysed. After lysis, the polymer coating is removed through orthogonal photochemistry, and the isolate has >50% yield of viable cells and these cells proliferate at rates comparable to control cells. Minority cell populations are enriched from erythrocyte-depleted blood to >99% purity, whereas the entire batch process requires 1 h and <$2000 in equipment. Batch scale-up is only contingent on irradiation area for the coating photopolymerization, as surfactant-based lysis can be easily achieved on any scale.


Assuntos
Separação Celular/métodos , Polímeros/química , Anticorpos Imobilizados/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular/instrumentação , Sobrevivência Celular/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial , Humanos , Hidrogéis/química , Células Jurkat , Antígenos Comuns de Leucócito/imunologia , Nanopartículas/química , Tensoativos/química
20.
Langmuir ; 31(9): 2689-96, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25689672

RESUMO

Photoinitiated thiol-yne chemistry is utilized as a click reaction for grafting of acid-terminated alkynes to thiol-terminated monolayers on a gold substrate to create stable, low-density monolayers. The resulting monolayers are compared with a well-packed 11-mercaptoundecanoic acid monolayer and the analogous low-density monolayers prepared through a solution phase synthetic approach. The overall structuring of the monolayer prepared by solid-phase grafting is characterized by contact angle goniometry and Fourier transform infrared spectroscopy. The results show that the product monolayer has an intermediate surface energy and a more disordered chemical structuring compared to a traditional well-packed self-assembled monolayer, showing a low-packing density of the chains at the monolayer surface. The monolayer's structure and electrochemical stability were studied by reductive desorption of the thiolates. The prepared low-density monolayers have a higher electrochemical stability than traditional well-packed monolayers, which results from the crystalline structure at the gold interface. This technique allows for simple, fast preparation of low-density monolayers of higher stability than well-packed monolayers. The use of a photomask to restrict light access to the substrate yielded these low-density monolayers in patterned regions defined by light exposure. This general thiol-yne approach is adaptable to a variety of analogous low-density monolayers with diverse chemical functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA