Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 176(2): 581-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085444

RESUMO

Water-use efficiency (WUE), thought to be a relevant trait for productivity and adaptation to water-limited environments, was estimated for three different ecosystems on the Mediterranean island of Pianosa: Mediterranean macchia (SMM), transition (S(TR)) and abandoned agricultural (SAA) ecosystems, representing a successional series. Three independent approaches were used to study WUE: eddy covariance measurements, C isotope composition of ecosystem respired CO2, and C isotope discrimination (Δ) of leaf material (dry matter and soluble sugars). Seasonal variations in C-water relations and energy fluxes, compared in S(MM) and in SAA, were primarily dependent on the specific composition of each plant community. WUE of gross primary productivity was higher in SMM than in SAA at the beginning of the dry season. Both structural and fast-turnover leaf material were, on average, more enriched in (13)C in S(MM) than SAA, indicating relatively higher stomatal control and WUE for the long-lived macchia species. This pattern corresponded to (13)C-enriched respired CO2 in SMM compared to the other ecosystems. Conversely, most of the annual herbaceous SAA species (terophytes) showed a drought-escaping strategy, with relatively high stomatal conductance and low WUE. An ecosystem-integrated Δ value was weighted for each ecosystem on the abundance of different life forms, classified according to Raunkiar's system. Agreement was found between ecosystem WUE calculated using eddy covariance and those estimated using integrated Δ approaches. Comparing the isotopic methods, Δ of leaf soluble sugars provided the most reliable proxy for short-term changes in photosynthetic discrimination and associated shifts in integrated canopy-level WUE along the successional series.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Água , Isótopos de Carbono/análise , Secas , Ilhas , Itália , Região do Mediterrâneo , Fotossíntese , Folhas de Planta/química , Plantas , Estações do Ano
2.
Isotopes Environ Health Stud ; 42(1): 57-65, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16500755

RESUMO

A new system for soil respiration measurement [P. Rochette, L.B. Flanagan, E.G. Gregorich. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J., 63, 1207-1213 (1999).] was modified in order to collect soil-derived CO2 for stable isotope analysis. The aim of this study was to assess the suitability of this modified soil respiration system to determine the isotopic composition (delta13C) of soil CO2 efflux and to measure, at the same time, the soil CO2 efflux rate, with the further advantage of collecting only one air sample. A comparison between different methods of air collection from the soil was carried out in a laboratory experiment. Our system, as well as the other dynamic chamber approach tested, appeared to sample the soil CO2, which is enriched with respect to the soil CO2 efflux, probably because of a mass dependent fractionation during diffusion and because of the atmospheric contribution in the upper soil layer. On the contrary, the static accumulation of CO2 into the chamber headspace allows sampling of delta13C-CO2 of soil CO2 efflux.


Assuntos
Dióxido de Carbono/química , Isótopos de Carbono/química , Solo/análise , Espectrofotometria Infravermelho , Humanos , Reprodutibilidade dos Testes , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA