Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(6): 2445-2461, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38450638

RESUMO

The effective fragment molecular orbital (EFMO) method has been developed to predict the total energy of a very large molecular system accurately (with respect to the underlying quantum mechanical method) and efficiently by taking advantage of the locality of strong chemical interactions and employing a two-level hierarchical parallelism. The accuracy of the EFMO method is partly attributed to the accurate and robust intermolecular interaction prediction between distant fragments, in particular, the many-body polarization and dispersion effects, which require the generation of static and dynamic polarizability tensors by solving the coupled perturbed Hartree-Fock (CPHF) and time-dependent HF (TDHF) equations, respectively. Solving the CPHF and TDHF equations is the main EFMO computational bottleneck due to the inefficient (serial) and I/O-intensive implementation of the CPHF and TDHF solvers. In this work, the efficiency and scalability of the EFMO method are significantly improved with a new CPU memory-based implementation for solving the CPHF and TDHF equations that are parallelized by either message passing interface (MPI) or hybrid MPI/OpenMP. The accuracy of the EFMO method is demonstrated for both covalently bonded systems and noncovalently bound molecular clusters by systematically examining the effects of basis sets and a key distance-related cutoff parameter, Rcut. Rcut determines whether a fragment pair (dimer) is treated by the chosen ab initio method or calculated using the effective fragment potential (EFP) method (separated dimers). Decreasing the value of Rcut increases the number of separated (EFP) dimers, thereby decreasing the computational effort. It is demonstrated that excellent accuracy (<1 kcal/mol error per fragment) can be achieved when using a sufficiently large basis set with diffuse functions coupled with a small Rcut value. With the new parallel implementation, the total EFMO wall time is substantially reduced, especially with a high number of MPI ranks. Given a sufficient workload, nearly ideal strong scaling is achieved for the CPHF and TDHF parts of the calculation. For the first time, EFMO calculations with the inclusion of long-range polarization and dispersion interactions on a hydrated mesoporous silica nanoparticle with explicit water solvent molecules (more than 15k atoms) are achieved on a massively parallel supercomputer using nearly 1000 physical nodes. In addition, EFMO calculations on the carbinolamine formation step of an amine-catalyzed aldol reaction at the nanoscale with explicit solvent effects are presented.

2.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37793073

RESUMO

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

3.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37114705

RESUMO

Using an OpenMP Application Programming Interface, the resolution-of-the-identity second-order Møller-Plesset perturbation (RI-MP2) method has been off-loaded onto graphical processing units (GPUs), both as a standalone method in the GAMESS electronic structure program and as an electron correlation energy component in the effective fragment molecular orbital (EFMO) framework. First, a new scheme has been proposed to maximize data digestion on GPUs that subsequently linearizes data transfer from central processing units (CPUs) to GPUs. Second, the GAMESS Fortran code has been interfaced with GPU numerical libraries (e.g., NVIDIA cuBLAS and cuSOLVER) for efficient matrix operations (e.g., matrix multiplication, matrix decomposition, and matrix inversion). The standalone GPU RI-MP2 code shows an increasing speedup of up to 7.5× using one NVIDIA V100 GPU with one IBM 42-core P9 CPU for calculations on fullerenes of increasing size from 40 to 260 carbon atoms using the 6-31G(d)/cc-pVDZ-RI basis sets. A single Summit node with six V100s can compute the RI-MP2 correlation energy of a cluster of 175 water molecules using the correlation consistent basis sets cc-pVDZ/cc-pVDZ-RI containing 4375 atomic orbitals and 14 700 auxiliary basis functions in ∼0.85 h. In the EFMO framework, the GPU RI-MP2 component shows near linear scaling for a large number of V100s when computing the energy of an 1800-atom mesoporous silica nanoparticle in a bath of 4000 water molecules. The parallel efficiencies of the GPU RI-MP2 component with 2304 and 4608 V100s are 98.0% and 96.1%, respectively.

4.
J Chem Phys ; 157(12): 124104, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182436

RESUMO

In the variational subspace valence bond (VSVB) [G. D. Fletcher, J. Chem. Phys. 142, 134112 (2015)] method, the electronic orbitals comprising the wave function correspond to chemically meaningful objects, such as bonds, lone pairs, atomic cores, and so on. Selected regions of a molecule (for example, a single chemical bond, as opposed to all the bonds) can be modeled with different levels of basis set and possible methods for modeling correlation from the other regions. The interactions between the components of a molecule (say, a bond and a neighboring orbital) can then be studied in detail for their impact on a chemical phenomenon while avoiding the expense of necessarily applying the higher levels and methods to the entire molecule. This work presents the theoretical basis for modeling correlation effects between specific electron pairs by incorporating terms in the inter-electronic coordinates ("r12") into VSVB. The approach is validated with calculations on small systems using single-reference wave functions.

5.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321259

RESUMO

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

6.
J Comput Chem ; 40(17): 1664-1673, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30919485

RESUMO

This work describes the software package, Valence, for the calculation of molecular energies using the variational subspace valence bond (VSVB) method. VSVB is an ab initio electronic structure method based on nonorthogonal orbitals. Important features of practical value include high parallel scalability, wave functions that can be constructed automatically by combining orbitals from previous calculations, and ground and excited states that can be modeled with a single configuration or determinant. The open-source software package includes tools to generate wave functions, a database of generic orbitals, example input files, and a library build intended for integration with other packages. We also describe the interface to an external software package, enabling the computation of optimized molecular geometries and vibrational frequencies. © 2019 Wiley Periodicals, Inc.

7.
J Phys Chem A ; 121(9): 2056-2067, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28211686

RESUMO

In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors. With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA-generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. The MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.

8.
J Chem Theory Comput ; 12(10): 4743-4767, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27462826

RESUMO

The analytic gradient for the Coulomb, polarization, exchange-repulsion, and dispersion terms of the fully integrated effective fragment molecular orbital (EFMO) method is derived and the implementation is discussed. The derivation of the EFMO analytic gradient is more complicated than that for the effective fragment potential (EFP) gradient, because the geometry of each EFP fragment is flexible (not rigid) in the EFMO approach. The accuracy of the gradient is demonstrated by comparing the EFMO analytic gradient with the numeric gradient for several systems, and by assessing the energy conservation during an EFMO NVE ensemble molecular dynamics simulation of water molecules. In addition to facilitating accurate EFMO geometry optimizations, this allows calculations with flexible EFP fragments to be performed.

9.
Acc Chem Res ; 47(9): 2786-94, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24810424

RESUMO

Conspectus Three novel fragmentation methods that are available in the electronic structure program GAMESS (general atomic and molecular electronic structure system) are discussed in this Account. The fragment molecular orbital (FMO) method can be combined with any electronic structure method to perform accurate calculations on large molecular species with no reliance on capping atoms or empirical parameters. The FMO method is highly scalable and can take advantage of massively parallel computer systems. For example, the method has been shown to scale nearly linearly on up to 131 000 processor cores for calculations on large water clusters. There have been many applications of the FMO method to large molecular clusters, to biomolecules (e.g., proteins), and to materials that are used as heterogeneous catalysts. The effective fragment potential (EFP) method is a model potential approach that is fully derived from first principles and has no empirically fitted parameters. Consequently, an EFP can be generated for any molecule by a simple preparatory GAMESS calculation. The EFP method provides accurate descriptions of all types of intermolecular interactions, including Coulombic interactions, polarization/induction, exchange repulsion, dispersion, and charge transfer. The EFP method has been applied successfully to the study of liquid water, π-stacking in substituted benzenes and in DNA base pairs, solvent effects on positive and negative ions, electronic spectra and dynamics, non-adiabatic phenomena in electronic excited states, and nonlinear excited state properties. The effective fragment molecular orbital (EFMO) method is a merger of the FMO and EFP methods, in which interfragment interactions are described by the EFP potential, rather than the less accurate electrostatic potential. The use of EFP in this manner facilitates the use of a smaller value for the distance cut-off (Rcut). Rcut determines the distance at which EFP interactions replace fully quantum mechanical calculations on fragment-fragment (dimer) interactions. The EFMO method is both more accurate and more computationally efficient than the most commonly used FMO implementation (FMO2), in which all dimers are explicitly included in the calculation. While the FMO2 method itself does not incorporate three-body interactions, such interactions are included in the EFMO method via the EFP self-consistent induction term. Several applications (ranging from clusters to proteins) of the three methods are discussed to demonstrate their efficacy. The EFMO method will be especially exciting once the analytic gradients have been completed, because this will allow geometry optimizations, the prediction of vibrational spectra, reaction path following, and molecular dynamics simulations using the method.

10.
ACS Macro Lett ; 1(4): 513-518, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35585752

RESUMO

Recent experiments have reported intriguing trends for the molecular weight (MW) dependence of the conductivity of block copolymer lamellae that contrast with the behavior of homopolymer matrices. By using coarse-grained simulations of the sorption and transport of penetrant cations, we probe the possible mechanisms underlying such behavior. Our results indicate that the MW dependence of conductivity of homopolymeric and block copolymeric matrices arise from different mechanisms. On the one hand, the solvation energies of cations, and, in turn, the charge carrier concentrations, themselves, exhibit a MW dependence in block copolymer matrices. Such trends are shown to arise from variations in the thickness of the conducting phase relative to that of the interfacial zones. Moreover, distinct mechanisms are shown to be responsible for the diffusivities of ions in homopolymer and block copolymer matrices. In the former, diffusivity effects associated with the free ends of the polymers play an important role. In contrast, in block copolymer lamellae, the interfacial zone between the blocks presents a zone of hindered diffusivity for ions and manifests as a molecular weight dependence of the ionic diffusivity. Together, the preceding mechanisms are shown to provide a plausible explanation for the experimentally observed trends for the conductivity of block copolymer matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA