Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6960, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521826

RESUMO

This work presents an outline of a detection system that employs the Compton spectrometer method to assess the non-linearity of scintillator light yield. A novel approach is introduced, leading to more accurate measurements through the separate determination of the intrinsic light output parameters and the non-linearity of the scintillators. Key features of this system include the use of a portable scintillation detector with three photomultiplier tubes for precise measurement of the average number of detected photoelectrons and the incorporation of recent advancements in correction techniques for accidental coincidences. The integration of digital acquisition, offline data analysis, and geometric adaptation reduces the time required to perform a measurement. The developed detector can simultaneously measure different timing properties, as well as the relative intensities following ionization excitation in a scintillator. The system's performance is demonstrated through measurements of the light yield dependence on the deposited energy for commercially available liquid, plastic, and inorganic scintillators. Such instrumentation serves as a valuable tool in the development of novel scintillating materials, including liquid or solid organic scintillators, inorganic scintillators, and composite scintillators for electron detection, in addition to traditional X-ray or γ -ray detection.

2.
Nanoscale ; 13(12): 6266-6267, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33734269

RESUMO

Correction for 'Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties' by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448-14458, DOI: .

3.
Nanoscale ; 12(27): 14448-14458, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32618327

RESUMO

We present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.

4.
ACS Nano ; 14(4): 4206-4215, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32275814

RESUMO

Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthesis of a ternary 2D architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct transitions. The core/barrier/crown configuration further enables two-photon fluorescence upconversion and, due to a high nonlinear absorption cross section, even allows to upconvert three near-infrared photons into a single green photon. These results demonstrate the capability of 2D heterostructured nanoplatelets to combine weak and strong confinement regimes to engineer their optoelectronic properties.

5.
RSC Adv ; 10(31): 18418-18422, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35517225

RESUMO

Highly pure millimeter-sized MOF-5 single crystals were synthesized and characterized. Photoluminescence (PL) spectroscopy and time-correlated single photon counting (TCSPC) demonstrate a solvent-guest dependency of MOF-5 emission and its ligand-centred nature. These results allow measuring the true MOF-5 luminescence free of solvent at a wavelength of 355 nm, a significantly lower wavelength than previously published. MOF-5 emission was also evaluated with different solvents and various degrees of water intake, explaining previously published observations. Comparison between lifetimes shows the fluorophore stabilization within the frameworks and demonstrates the progressive influence of the Zn4O subunits on the fluorescence during hydration. Overall, this work highlights the necessity to obtain phase-pure material, especially when moisture sensitivity can play a role, before ascribing electronic transitions. This study is a rigorous new take on the iconic MOF-5 and on its photoluminescence properties.

6.
Nanoscale ; 11(25): 12230-12241, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31204756

RESUMO

CdSe nanoplatelets can be synthesized with different lateral sizes; very small nanoplatelets have almost quantum dot like features (almost discrete exciton states), while very large ones are expected to have properties of colloidal quantum wells (exciton continuum). However, nanoplatelets can be in an intermediate confinement regime with a rich substructure of excitons, which is neither quantum dot like nor an ideal 2D exciton. In this manuscript, we discuss the experimental transition energies and relaxation dynamics of exciton states in CdSe platelets with varying lateral dimensions and compare them with a microscopic theoretical model including exciton-phonon scattering. The model takes special care of the interplay of confinement and Coulomb coupling in the intermediate regime showing strong changes with respect to simple weak or strong confinement models by solving the full four dimensional lateral factorization free exciton wavefunction. Depending on the platelet size broad resonances previously attributed to just ground and excited states are actually composed of a rich substructure of several exciton states in their temporal dynamics. We show that these factorization free exciton states can explain the spectral features observed in photoluminescence experiments. Furthermore we demonstrate that the interplay of exciton bright and dark states provides principle insights into the overall temporal relaxation dynamics, and allows tuning of the exciton cooling via lateral platelet size. Our results and theoretical approach are directly relevant for understanding e.g. the size tuneability of lasing, excitonic cooling dynamics or light harvesting applications in these and similar 2D systems of finite lateral size.

7.
Nanoscale ; 11(9): 3958-3967, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30762858

RESUMO

In a comparative study we investigate the carrier-phonon coupling in CdSe based core-only and hetero 2D as well as 0D nanoparticles. We demonstrate that the coupling can be strongly tuned by the lateral size of nanoplatelets, while, due to the weak lateral confinement, the transition energies are only altered by tens of meV. Our analysis shows that an increase in the lateral platelet area results in a strong decrease in the phonon coupling to acoustic modes due to deformation potential interaction, yielding an exciton deformation potential of 3.0 eV in line with theory. In contrast, coupling to optical modes tends to increase with the platelet area. This cannot be explained by Fröhlich interaction, which is generally dominant in II-VI materials. We compare CdSe/CdS nanoplatelets with their equivalent, spherical CdSe/CdS nanoparticles. Universally, in both systems the introduction of a CdS shell is shown to result in an increase of the average phonon coupling, mainly related to an increase of the coupling to acoustic modes, while the coupling to optical modes is reduced with increasing CdS layer thickness. The demonstrated size and CdS overgrowth tunability has strong implications for applications like tuning carrier cooling and carrier multiplication - relevant for solar energy harvesting applications. Other implications range from transport in nanosystems e.g. for field effect transistors or dephasing control. Our results open up a new toolbox for the design of photonic materials.

8.
Phys Chem Chem Phys ; 19(41): 28105-28115, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29019483

RESUMO

When new materials appear as potential alternatives for radiation detection, several criteria have to be fulfilled. The one presented herein is the response variation to large irradiation doses of neutron/gamma discriminating plastic scintillators. Thus, several samples were exposed to high gamma doses reaching 10 kGy. They were characterized in terms of gamma spectrometry and fast neutron/gamma discrimination, prior to and after irradiation. Results show an unexpected increase of the figure of merit (FoM), which is the numerical value for n/γ discrimination performances. An in-depth investigation evaluates the physicochemical impact of such large doses within the material. The characterization includes photophysics, radiation/matter interaction and chemical analyses (EPR, 1H NMR, fluorescence spectroscopy and HRMS).

9.
Chem Commun (Camb) ; 52(80): 11975-11978, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722289

RESUMO

The lateral dimensions of CdSe nanoplatelets have a strong and unique influence on their opto-electronic properties, with sizes that can be tuned from the weak to the strong exciton confinement regime. There are state-of-the-art reports on several nanoplatelet syntheses; however, at present only the thickness is well-controlled. We demonstrate here that we can achieve a control over the aspect ratio and overall nanoplate area by carefully adjusting the reagents that induce the in-plane growth. A variation of the fraction of hydrated Cd(OAc)2 in a Cd(OAc)2/Cd(OAc)2·2H2O mixture tailors the nanoplatelet aspect ratio. This occurs independently of the reaction time, which can be used to fine-tune the overall length and width. An interpretation is given by the in situ formation of a small amount of hydroxide anions that alter the surface energy of specific planes.

10.
Chemistry ; 22(34): 12074-80, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27406840

RESUMO

The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A.

11.
Phys Rev Lett ; 116(11): 116802, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035317

RESUMO

We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

12.
Chemistry ; 20(48): 15660-85, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25335882

RESUMO

Recent developments of plastic scintillators are reviewed, from 2000 to March 2014, distributed in two different chapters. First chapter deals with the chemical modifications of the polymer backbone, whereas modifications of the fluorescent probe are presented in the second chapter. All examples are provided with the scope of detection of various radiation particles. The main characteristics of these newly created scintillators and their detection properties are given.

13.
Chem Commun (Camb) ; 50(63): 8663-6, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24942914

RESUMO

We describe an efficient synthetic route toward novel organocobalt complexes [(η(4)-C4(nT)4)Co(η(5)-C5H5)] with n = 1, 2, 3 thiophene rings. Solution-processed bulk heterojunctions solar cells based on CpCoCb(3T)4:PCBM blends achieve power conversion efficiencies of up to 2.1%.

14.
Proc Natl Acad Sci U S A ; 110(13): 4923-8, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479656

RESUMO

We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices.


Assuntos
Polímeros/química , Polímeros/síntese química , Tiofenos/química , Estrutura Molecular
15.
Angew Chem Int Ed Engl ; 48(28): 5199-202, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19526475

RESUMO

Adding an aryne to a tertiary allylamine affords o-allylaniline products of an aza-Claisen rearrangement. The aryne simultaneously provides the pi component for the rearrangement and the quaternization event that lowers the activation energy for the sigmatropic shift. The reaction was applied to the synthesis of medium-ring benzannulated amines (see scheme).


Assuntos
Compostos Aza/química , Derivados de Benzeno/química , Aminas/química , Catálise , Piperidinas/síntese química , Piperidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA