Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 140(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715364

RESUMO

In this study, the damage evolution of liver tissue was quantified at the microstructural level under tensile, compression, and shear loading conditions using an interrupted mechanical testing method. To capture the internal microstructural changes in response to global deformation, the tissue samples were loaded to different strain levels and chemically fixed to permanently preserve the deformed tissue geometry. Tissue microstructural alterations were analyzed to quantify the accumulated damages, with damage-related parameters such as number density, area fraction, mean area, and mean nearest neighbor distance (NND). All three loading states showed a unique pattern of damage evolution, in which the damages were found to increase in number and size, but decrease in NND as strain level increased. To validate the observed damage features as true tissue microstructural damages, more samples were loaded to the above-mentioned strain levels and then unloaded back to their reference state, followed by fixation. The most major damage-relevant features at higher strain levels remained after the release of the external loading, indicating the occurrence of permanent inelastic deformation. This study provides a foundation for future structure-based constitutive material modeling that can capture and predict the stress-state dependent damage evolution in liver tissue.


Assuntos
Força Compressiva , Fígado/citologia , Teste de Materiais , Resistência ao Cisalhamento , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Suínos , Resistência à Tração
2.
Data Brief ; 8: 1338-43, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27579338

RESUMO

Myocardial infarction was experimentally induced in rat hearts and harvested immediately, 7, 14 and 28 days after the infarction induction. Anterior wall infarct samples underwent biaxial tensile and uniaxial compressive testing. Orientation of collagen fibres was analysed following mechanical testing. In this paper, we present the tensile and compressive stress-strain raw data, the calculated tensile and compressive moduli and the measured angles of collagen orientation. The presented data is associated with the research article titled "Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression" (Sirry et al., 2016) [1].

3.
J Mech Behav Biomed Mater ; 63: 252-264, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27434651

RESUMO

Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was induced in rats and hearts were harvested immediately (0 day), 7, 14 and 28 days after infarction onset. Left ventricle anterioapical samples were cut and underwent equibiaxial and non equibiaxial tension followed by uniaxial compression mechanical tests. Histological analysis was conducted to confirm MI and to quantify the size of the induced infarcts. Infarcts maintained anisotropy and the nonlinear biaxial and compressive mechanical behaviour throughout the healing phases with the circumferential direction being stiffer than the longitudinal direction. Mechanical coupling was observed between the two axes in all infarct groups. The 0, 7, 14 and 28 days infarcts showed 438, 693, 1048 and 1218kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p=0.0060, 0.0293, and 0.0268 for 0, 7 and 14 days groups). Collagen fibres were found to align in a preferred direction for all infarct groups supporting the observed mechanical anisotropy. The presented data are useful for developing material models for healing infarcts and for setting a baseline for future assessment of emerging mechanical-based MI therapies.


Assuntos
Ventrículos do Coração/patologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Masculino , Pressão , Ratos , Ratos Wistar , Estresse Mecânico
4.
J Long Term Eff Med Implants ; 25(1-2): 41-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955006

RESUMO

The atrioventricular valve leaflets (mitral and tricuspid) are different from the semilunar valve leaflets (aortic and pulmonary) in layered structure, ultrastructural constitution and organization, and leaflet thickness. These differences warrant a comparative look at the bending properties of the four types of leaflets. We found that the moment-curvature relationships in atrioventricular valves were stiffer than in semilunar valves, and the moment-curvature relationships of the left-side valve leaflets were stiffer than their morphological analog of the right side. These trends were supported by the moment-curvature curves and the flexural rigidity analysis (EI value decreased from mitral, tricuspid, aortic, to pulmonary leaflets). However, after taking away the geometric effect (moment of inertia I), the instantaneous effective bending modulus E showed a reversed trend. The overall trend of flexural rigidity (EI: mitral > tricuspid > aortic > pulmonary) might be correlated with the thickness variations among the four types of leaflets (thickness: mitral > tricuspid > aortic > pulmonary). The overall trend of the instantaneous effective bending modulus (E: mitral < tricuspid < aortic < pulmonary) might be correlated to the layered fibrous ultrastructures of the four types of leaflets, of which the fibers in mitral and tricuspid leaflets were less aligned, and the fibers in aortic and pulmonary leaflets were highly aligned. We also found that, for all types of leaflets, moment-curvature relationships are stiffer in against-curvature (AC) bending than in with-curvature bending (WC), which implies that leaflets tend to flex toward their natural curvature and comply with blood flow. Lastly, we observed that the leaflets were stiffer in circumferential bending compared with radial bending, likely reflecting the physiological motion of the leaflets, i.e., more bending moment and movement were experienced in radial direction than circumferential direction.


Assuntos
Valva Aórtica/fisiologia , Valva Mitral/fisiologia , Valva Pulmonar/fisiologia , Animais , Valva Aórtica/ultraestrutura , Fenômenos Biomecânicos , Microscopia Eletrônica de Varredura , Valva Mitral/ultraestrutura , Valva Pulmonar/ultraestrutura , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA