Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neuropediatrics ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547905

RESUMO

In patients with neurodevelopmental disorders (NDDs), exome sequencing (ES), the diagnostic gold standard, reveals an underlying monogenic condition in only approximately 40% of cases. We report the case of a female patient with profound NDD who died 30 years ago at the age of 3 years and for whom genome sequencing (GS) now identified a single-exon deletion in TBCK previously missed by ExomeDepth, the copy number variation (CNV) detection algorithm in ES.Deoxyribonucleic acid (DNA) was extracted from frozen muscle tissue of the index patient and the parents' blood. Genome data were analyzed for structural variants and single nucleotide variants (SUVs)/indels as part of the Bavarian Genomes consortium project.Biallelic variants in TBCK, which are linked to the autosomal recessive disorder TBCK syndrome, were detected in the affected individual: a novel frameshift variant and a deletion of exon 23, previously established as common but underrecognized pathogenic variant in individuals with TBCK syndrome. While in the foregoing ES analysis, calling algorithms for (SNVs)/indels were able to identify the frameshift variant, ExomeDepth failed to call the intragenic deletion.Our case illustrates the added value of GS for the detection of single-exon deletions for which calling from ES data remains challenging and confirms that the deletion of exon 23 in TBCK may be underdiagnosed in patients with NDDs. Furthermore, it shows the importance of "molecular or genetic autopsy" allowing genetic risk counseling for family members as well as the end of a diagnostic odyssey of 30 years.

2.
Clin Genet ; 105(4): 406-414, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214412

RESUMO

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Mutação , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefrite Hereditária/diagnóstico , Hematúria/genética , Proteinúria/genética
3.
Hepatology ; 79(5): 1075-1087, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976411

RESUMO

BACKGROUND AND AIMS: Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS: With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS: In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS: This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.


Assuntos
Falência Hepática Aguda , Transplante de Fígado , Criança , Humanos , Recidiva Local de Neoplasia , Falência Hepática Aguda/diagnóstico , Biomarcadores , Transplante de Fígado/efeitos adversos , Europa (Continente)
4.
J Neurol ; 271(4): 1937-1946, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38127101

RESUMO

BACKGROUND: Neuromuscular disorders (NMDs) are heterogeneous conditions with a considerable fraction attributed to monogenic defects. Despite the advancements in genomic medicine, many patients remain without a diagnosis. Here, we investigate whether a comprehensive reassessment strategy improves the diagnostic outcomes. METHODS: We analyzed 263 patients with NMD phenotypes that underwent diagnostic exome or genome sequencing at our tertiary referral center between 2015 and 2023. We applied a comprehensive reassessment encompassing variant reclassification, re-phenotyping and NGS data reanalysis. Multivariable logistic regression was performed to identify predictive factors associated with a molecular diagnosis. RESULTS: Initially, a molecular diagnosis was identified in 53 cases (20%), while an additional 23 (9%) had findings of uncertain significance. Following comprehensive reassessment, the diagnostic yield increased to 23%, revealing 44 distinct monogenic etiologies. Reasons for newly obtained molecular diagnoses were variant reclassifications in 7 and NGS data reanalysis in 3 cases including one recently described disease-gene association (DNAJB4). Male sex reduced the odds of receiving a molecular diagnosis (OR 0.42; 95%CI 0.21-0.82), while a positive family history (OR 5.46; 95%CI 2.60-11.76) and a myopathy phenotype (OR 2.72; 95%CI 1.11-7.14) increased the likelihood. 7% were resolved through targeted genetic testing or classified as acquired etiologies. CONCLUSION: Our findings reinforce the use of NGS in NMDs of suspected monogenic origin. We show that a comprehensive reassessment enhances diagnostic accuracy. However, one needs to be aware that genetic diagnoses are often made with uncertainty and can even be downgraded based on new evidence.


Assuntos
Doenças Musculares , Doenças Neuromusculares , Adulto , Humanos , Masculino , Doenças Neuromusculares/diagnóstico , Doenças Musculares/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
6.
Mov Disord ; 38(10): 1914-1924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485550

RESUMO

BACKGROUND: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE: We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , MicroRNAs , Transtornos dos Movimentos , Adolescente , Criança , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Haploinsuficiência/genética , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas/genética , Tremor
8.
Eur J Hum Genet ; 31(9): 1032-1039, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365401

RESUMO

DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.


Assuntos
Anormalidades Múltiplas , Metilação de DNA , Humanos , Fenótipo , Anormalidades Múltiplas/genética , Alelos , Mosaicismo
9.
Hum Genomics ; 17(1): 55, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330543

RESUMO

Early-onset dementia (EOD), with symptom onset before age 65, has a strong genetic burden. Due to genetic and clinical overlaps between different types of dementia, whole-exome sequencing (WES) has emerged as an appropriate screening method for diagnostic testing and novel gene-finding approaches. We performed WES and C9orf72 repeat testing in 60 well-defined Austrian EOD patients. Seven patients (12%) carried likely disease-causing variants in monogenic genes, PSEN1, MAPT, APP, and GRN. Five patients (8%) were APOE4 homozygote carriers. Definite and possible risk variants were detected in the genes TREM2, SORL1, ABCA7 and TBK1. In an explorative approach, we cross-checked rare gene variants in our cohort with a curated neurodegeneration candidate gene list and identified DCTN1, MAPK8IP3, LRRK2, VPS13C and BACE1 as promising candidate genes. Conclusively, 12 cases (20%) carried variants relevant to patient counseling, comparable to previously reported studies, and can thus be considered genetically resolved. Reduced penetrance, oligogenic inheritance and not yet identified high-risk genes might explain the high number of unresolved cases. To address this issue, we provide complete genetic and phenotypic information (uploaded to the European Genome-phenome Archive), enabling other researchers to cross-check variants. Thereby, we hope to increase the chance of independently finding the same gene/variant-hit in other well-defined EOD patient cohorts, thus confirming new genetic risk variants or variant combinations.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Predisposição Genética para Doença , Áustria , Ácido Aspártico Endopeptidases/genética , Testes Genéticos , Mutação , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética
11.
Eur J Hum Genet ; 31(6): 674-680, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922632

RESUMO

Individuals with congenital anomalies of the kidney and urinary tract (CAKUT) show a broad spectrum of malformations. CAKUT can occur in an isolated fashion or as part of a syndromic disorder and can lead to end-stage kidney failure. A monogenic cause can be identified in ~12% of affected individuals. This study investigated a single-center CAKUT cohort analyzed by exome sequencing (ES). Emphasis was placed on the question whether diagnostic yield differs between certain CAKUT phenotypes (e.g., bilateral kidney affection, unilateral kidney affection or only urinary tract affection). 86 unrelated individuals with CAKUT were categorized according to their phenotype and analyzed by ES to identify a monogenic cause. Prioritized variants were rated according to the recommendations of the American College of Medical Genetics and Genomics and the Association for Clinical Genomic Science. Diagnostic yields of different phenotypic categories were compared. Clinical data were collected using a standardized questionnaire. In the study cohort, 7/86 individuals had a (likely) pathogenic variant in the genes PAX2, PBX1, EYA1, or SALL1. Additionally, in one individual, a 17q12 deletion syndrome (including HNF1B) was detected. 64 individuals had a kidney affection, which was bilateral in 36. All solved cases (8/86, 9%) had bilateral kidney affection (diagnostic yield in subcohort: 8/36, 22%). Although the diagnostic yield in CAKUT cohorts is low, our single-center experience argues, that, in individuals with bilateral kidney affection, monogenic burden is higher than in those with unilateral kidney or only urinary tract affection.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Humanos , Sequenciamento do Exoma , Rim/anormalidades , Sistema Urinário/anormalidades , Refluxo Vesicoureteral/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia
13.
Ann Neurol ; 93(2): 330-335, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333996

RESUMO

Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified 3 unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities. ANN NEUROL 2023;93:330-335.


Assuntos
Distonia , Distúrbios Distônicos , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Corpo Estriado , Distonia/genética , Distúrbios Distônicos/genética , Neostriado , Complexo de Proteínas Formadoras de Poros Nucleares/genética
15.
Front Pediatr ; 10: 974840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245711

RESUMO

Background: Steroid resistant nephrotic syndrome (SRNS) represents a significant renal disease burden in childhood and adolescence. In contrast to steroid sensitive nephrotic syndrome (SSNS), renal outcomes are significantly poorer in SRNS. Over the past decade, extensive genetic heterogeneity has become evident while disease-causing variants are still only identified in 30% of cases in previously reported studies with proportion and type of variants identified differing depending on the age of onset and ethnical background of probands. A genetic diagnosis however can have implications regarding clinical management, including kidney transplantation, extrarenal disease manifestations, and, in some cases, even causal therapy. Genetic diagnostics therefore play an important role for the clinical care of SRNS affected individuals. Methodology and results: Here, we performed NPHS2 Sanger sequencing and subsequent exome sequencing in 30 consanguineous Iranian families with a child affected by SRNS with a mean age of onset of 16 months. We identified disease-causing variants and one variant of uncertain significance in 22 families (73%), including variants in NPHS1 (30%), followed by NPHS2 (20%), WT1 (7%) as well as in NUP205, COQ6, ARHGDIA, SGPL1, and NPHP1 in single cases. Eight of these variants have not previously been reported as disease-causing, including four NPHS1 variants and one variant in NPHS2, ARHGDIA, SGPL1, and NPHP1 each. Conclusion: In line with previous studies in non-Iranian subjects, we most frequently identified disease-causing variants in NPHS1 and NPHS2. While Sanger sequencing of NPHS2 can be considered as first diagnostic step in non-congenital cases, the genetic heterogeneity underlying SRNS renders next-generation sequencing based diagnostics as the most efficient genetic screening method. In accordance with the mainly autosomal recessive inheritance pattern, diagnostic yield can be significantly higher in consanguineous than in outbred populations.

16.
Front Pediatr ; 10: 944784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090556

RESUMO

We present a now 18-year-old female patient with a severe congenital myopathy phenotype, originally diagnosed as mitochondrial myopathy, however later revealed to constitute a SCN4A-related myopathy based on genetic testing. After birth, floppiness, bradycardia and respiratory insufficiency ensued, and moderately reduced mitochondrial complex I activity was found in muscle tissue (tested at 3 weeks and 3 years of age, respectively). She was treated with riboflavin, carnitine, creatine and a ketogenic diet. At the age of 13 years, whole exome sequencing challenged the initial diagnosis by identifying two (compound heterozygous) SCN4A variants affecting the highly conserved voltage sensor and pore regions of the voltage-gated sodium channel NaV1.4: a known pathogenic loss of function (LOF) variant [c.4360C>T; p.(Arg1454Trp)] and a novel variant of uncertain significance [c.3615C>G; p.(Asn1205Lys)]. For this novel variant, a LOF effect was predicted by in silico, clinical and functional evidence from paralog human sodium channels, and the variant was accordingly classified as likely pathogenic. The patient's phenotype is in line with the few published cases of autosomal recessive SCN4A-related myopathy. There was limited benefit from treatment with salbutamol and acetazolamide, while pyridostigmine caused side effects at a minor dose. This report highlights the importance of genetic testing in severe myopathies particularly in regard to treatment options and the value of paralog information in evaluating ion channel variations.

17.
Front Med (Lausanne) ; 9: 957733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117978

RESUMO

Disease-causing variants in COL4A3-5 are associated with type-IV-collagen-related nephropathy, a genetically and phenotypically multifaceted disorder comprising Alport syndrome (AS) and thin basement membrane nephropathy (TBMN) and autosomal, X-linked and a proposed digenic inheritance. Initial symptoms of individuals with AS are microscopic hematuria followed by proteinuria leading to kidney failure (90% on dialysis < age 40 years). In contrast, individuals with TBMN, an outdated histology-derived term, present with microscopic hematuria, only some of them develop kidney failure (>50 years of age). An early diagnosis of type-IV-collagen-related nephropathy is essential for optimized therapy and slowing of the disease. Sixty index cases, in whom exome sequencing had been performed and with disease-causing variant(s) in COL4A3-5, were evaluated concerning their clinical tentative diagnosis and their genotype. Of 60 reevaluated individuals with type-IV-collagen-related nephropathy, 72% had AS, 23% TBMN and 5% focal segmental glomerulosclerosis (FSGS) as clinical tentative diagnosis. The FSGS cases had to be re-classified as having type-IV-collagen-related nephropathy. Twelve percent of cases had AS as clinical tentative diagnosis and a monoallelic disease-causing variant in COL4A3/4 but could not be classified as autosomal dominant AS because of limited or conflicting clinical data. This study illustrates the complex clinical and genetic picture of individuals with a type IV-collagen-related nephropathy indicating the need of a refined nomenclature and the more interdisciplinary teamwork of clinicians and geneticists as the key to optimized patient care.

18.
Neurobiol Aging ; 119: 117-126, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35933239

RESUMO

Patients with amyotrophic lateral sclerosis (ALS) show substantial differences in disease progression and survival. However, the genetic contribution to the extremes of this spectrum remains poorly characterized. We unbiasedly selected and genotyped 102 ALS patients with very short (<15 months) and 90 with very long survival (>100 months) from the ALS registry of Ulm University using whole-exome sequencing and C9orf72 repeat expansion testing followed by a clinicogenetic correlation analysis. Clinically, groups significantly differed regarding site of disease onset, age at onset, BMI at diagnosis, disease progression rates, and diagnostic latency. We found a monogenic disease cause in 31 patients (16%) without significant differences in patients with short and long survival (19% vs. 13%; p = 0.41), but differences in the genotypic architecture. C9orf72 expansions and FUS mutations were only found in fast progressors, whereas SOD1 variants were frequent in both groups contributing 52% of all monogenic cases-33% among fast and 75% among slow variants. Our genotype-phenotype correlation may be relevant for genetic counseling, estimation of prognosis, and therapeutic decisions.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Progressão da Doença , Estudos de Associação Genética , Humanos , Superóxido Dismutase-1/genética
19.
J Natl Cancer Inst ; 114(11): 1523-1532, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980168

RESUMO

BACKGROUND: Genetic predisposition is has been identified as a cause of cancer, yet little is known about the role of adult cancer predisposition syndromes in childhood cancer. We examined the extent to which heterozygous pathogenic germline variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, MSH2, MSH6, MLH1, and PMS2 contribute to cancer risk in children and adolescents. METHODS: We conducted a meta-analysis of 11 studies that incorporated comprehensive germline testing for children and adolescents with cancer. ClinVar pathogenic or likely pathogenic variants (PVs) in genes of interest were compared with 2 control groups. Results were validated in a cohort of mainly European patients and controls. We employed the Proxy External Controls Association Test to account for different pipelines. RESULTS: Among 3975 children and adolescents with cancer, statistically significant associations with cancer risk were observed for PVs in BRCA1 and 2 (26 PVs vs 63 PVs among 27 501 controls, odds ratio = 2.78, 95% confidence interval = 1.69 to 4.45; P < .001) and mismatch repair genes (19 PVs vs 14 PVs among 27 501 controls, odds ratio = 7.33, 95% confidence interval = 3.64 to 14.82; P <.001). Associations were seen in brain and other solid tumors but not in hematologic neoplasms. We confirmed similar findings in 1664 pediatric cancer patients primarily of European descent. CONCLUSION: These data suggest that heterozygous PVs in BRCA1 and 2 and mismatch repair genes contribute with reduced penetrance to cancer risk in children and adolescents. No changes to predictive genetic testing and surveillance recommendations are required.


Assuntos
Neoplasias da Mama , Neoplasias , Adulto , Criança , Humanos , Adolescente , Feminino , Reparo de Erro de Pareamento de DNA/genética , Mutação em Linhagem Germinativa , Proteína BRCA1/genética , Genes BRCA2 , Predisposição Genética para Doença , Neoplasias/genética , Neoplasias da Mama/genética , Proteína BRCA2/genética
20.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884425

RESUMO

Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA