Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Microorganisms ; 12(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399673

RESUMO

The treatment of chronic wounds still represents a major challenge in wound management. Recent estimates suggest that 60-80% of chronic wounds are colonized by pathogenic microorganisms, which are strongly considered to have a major inhibiting influence on the healing process. By means of an innovative biofilm model based on human plasma, the time-dependent behavior of various bacterial strains under wound-milieu-like conditions were investigated, and the growth habits of different cocci species were compared. Undescribed fusion events between colonies of MRSA as well as of Staphylococcus epidermidis were detected, which were associated with the remodeling and reorganization of the glycocalyx of the wound tissue. After reaching a maximum colony size, the spreading of individual bacteria was observed. Interestingly, the combination of different cocci species with Pseudomonas aeruginosa in the human plasma biofilm revealed partial synergistic effects in these multispecies organizations. RT-qPCR analyses gave a first impression of the relevant proteins involved in the formation and maturation of biofilms, especially the role of fibrinogen-binding proteins. Knowledge of the maturation and growth behavior of persistent biofilms investigated in a translational human biofilm model reflects a starting point for the development of novel tools for the treatment of chronic wounds.

2.
J Wound Care ; 32(7): 446-455, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37405939

RESUMO

OBJECTIVE: Wound biofilms are one of the greatest challenges in the therapy of hard-to-heal (chronic) wounds, as potent antimicrobial substances fail to eradicate bacteria within short incubation periods. Preclinical investigations using novel model systems that closely mimic the human wound environment and wound biofilm are required to identify new and effective therapeutic options. This study aims to identify bacterial colonisation patterns that are relevant for diagnosis and therapy. METHOD: In this study, a recently established human plasma biofilm model (hpBIOM) was incorporated into a wound within human dermal resectates after abdominoplasty. The interaction of the biofilm-forming bacteria meticillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa with the skin cells was investigated. Possible effects on wound healing processes in correlation with the persistence of the biofilm in the wound environment were analysed in patients with leg ulcers of different aetiologies and biofilm burden. RESULTS: Using haematoxylin and eosin staining, species-dependent infiltration modes of the bacteria into the wound tissue were determined for the pathogens MRSA and Pseudomonas aeruginosa. The spreading behaviour correlated with clinical observations of the spatial distributions of the bacteria. In particular, the clinically prominent Pseudomonas aeruginosa-specific distension of the wound margin was identified as epidermolysis due to persistent infiltration. CONCLUSION: The hpBIOM applied in this study represents a potential tool for preclinical analyses dealing with approval processes for new antimicrobial applications. In terms of clinical practice, a microbiological swabbing technique including the wound margin should be routinely applied to prevent wound exacerbation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Humanos , Desbridamento , Cicatrização , Modelos Biológicos , Bactérias , Biofilmes , Pseudomonas aeruginosa , Infecção dos Ferimentos/tratamento farmacológico
3.
J Clin Med ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37240465

RESUMO

There is compelling evidence suggesting a pivotal role played by macrophages in orchestrating intestinal wound healing. Since macrophages display significant plasticity and heterogeneity, exhibiting an either classically activated (M1-like) or alternatively activated (M2-like) phenotype, they can aggravate or attenuate intestinal wound healing. Growing evidence also demonstrates a causal link between impaired mucosal healing in inflammatory bowel disease (IBD) and defects in the polarization of pro-resolving macrophages. By targeting the switch from M1 to M2 macrophages, the phosphodiesterase-4 inhibitor Apremilast has gained recent attention as a potential IBD drug. However, there is a gap in our current knowledge regarding the impact of Apremilast-induced macrophages' polarization on intestinal wound healing. The THP-1 cells were differentiated and polarized into M1 and M2 macrophages, and subsequently treated with Apremilast. Gene expression analysis was performed to characterize macrophage M1 and M2 phenotypes, and to identify possible target genes of Apremilast and the involved pathways. Next, intestinal fibroblast (CCD-18) and epithelial (CaCo-2) cell lines were scratch-wounded and exposed to a conditioned medium of Apremilast-treated macrophages. Apremilast had a clear effect on macrophage polarization, inducing an M1 to M2 phenotype switch, which was associated with NF-κB signaling. In addition, the wound-healing assays revealed an indirect influence of Apremilast on fibroblast migration. Our results support the hypothesis of Apremilast acting through the NF-κB-pathway and provide new insights into the interaction with fibroblast during intestinal wound healing.

4.
J Photochem Photobiol B ; 233: 112504, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777177

RESUMO

OBJECTIVES: Treating infected or chronic wounds burdened with biofilms still is a major challenge in medical care. Healing-stimulating factors lose their efficacy due to bacterial degradation, and antimicrobial substances negatively affect dermal cells. Therefore, alternative treatment approaches like the pulsed low intensity laser therapy (LILT) require consideration. METHODS: The effect of pulsed LILT (904 nm, in three frequencies) on relevant human cells of the wound healing process (fibroblasts (BJ), keratinocytes (HaCaT), endothelial cells (HMEC), monocytes (THP-1)) were investigated in in-vitro and ex-vivo wound models with respect to viability, proliferation and migration. Antimicrobial efficacy of the most efficient frequency in cell biological analyses of LILT (3200 Hz) was determined in a human biofilm model (lhBIOM). Quantification of bacterial load was evaluated by suspension method and qualitative visualization was performed by scanning electron microscopy (SEM). RESULTS: Pulsed LILT at 904 nm at 3200 Hz ± 50% showed the most positive effects on metabolic activity and proliferation of human wound cells in vitro (after 72 h - BJ: BPT 0.97 ± 0.05 vs. 0.75 ± 0.04 (p = 0.0283); HaCaT: BPT 0.79 ± 0.04 vs. 0.59 ± 0.02 (p = 0.0106); HMEC: 0.74 ± 0.02 vs. 0.52 ± 0.04 (p = 0.009); THP-1: 0.58 ± 0.01 vs. 0.64 ± 0.01 (p > 0.05) and ex vivo. Interestingly, re-epithelialization was stimulated in a frequency-independent manner. The inhibition of metabolic activity after TNF-α application was abolished after laser treatment. No impact of LILT on monocytes was detected. Likewise, the tested LILT regimens showed no growth rate reducing effects on three bacterial strains (after 72 h - PA: -1.03%; SA: -0.02%; EF: -1,89%) and one fungal (-2.06%) biofilm producing species compared to the respective untreated control. Accordingly, no significant morphological changes of the biofilms were observed after LILT treatment in the SEM. CONCLUSIONS: Frequent application of LILT (904 nm, 3200 Hz) seems to be beneficial for the metabolism of human dermal cells during wound healing. Considering this, the lack of disturbance of the behavior of the immune cells and no growth-inducing effect on bacteria and fungi in the biofilm can be assigned as rather positive. Based on this combined mode of action, LILT may be an option for hard to heal wounds infected with persistent biofilms.


Assuntos
Anti-Infecciosos , Células Endoteliais , Bactérias , Biofilmes , Humanos , Lasers , Cicatrização
5.
Front Microbiol ; 12: 628283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917041

RESUMO

Farnesyltransferase inhibitors (FTIs) are focus for the treatment of several diseases, particularly in the field of cancer therapy. Their potential, however, goes even further, as a number of studies have evaluated FTIs for the treatment of infectious diseases such as malaria, African sleeping sickness, leishmaniosis, and hepatitis D virus infection. Little is known about protein prenylation mechanisms in human pathogens. However, disruption of IspA, a gene encoding the geranyltranstransferase of Staphylococcus aureus (S. aureus) leads to reprogramming of cellular behavior as well as impaired growth and decreased resistance to cell wall-targeting antibiotics. We used an agar well diffusion assay and a time kill assay and determined the minimum inhibitory concentrations of the FTIs lonafarnib and tipifarnib. Additionally, we conducted cell viability assays. We aimed to characterize the effect of these FTIs on S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis (S. epidermidis), Escherichia coli (E. coli), Enterococcus faecium (E. faecium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and Streptococcus pneumoniae (S. pneumoniae). Both the FTIs lonafarnib and tipifarnib were capable of inhibiting the growth of the Gram-positive bacteria S. aureus, MRSA, S. epidermidis, and S. pneumoniae, whereas no effect was observed on Gram-negative bacteria. The analysis of the impact of lonafarnib and tipifarnib on common human pathogens might lead to novel insights into their defense mechanisms and therefore provide new therapeutic targets for antibiotic-resistant bacterial infections.

6.
Int J Antimicrob Agents ; 57(5): 106319, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33716180

RESUMO

OBJECTIVES: A major problem for wound healing is contamination with bacteria, often resulting in biofilm formation and wound infection, which, in turn, needs immediate intervention such as surgical debridement and through irrigation. A topical treatment with cold atmospheric pressure plasma (CAP) for wound disinfection may present an alternative and less painful approach. METHODS: This study investigated the antibacterial effects of a cold atmospheric pressure argon plasma jet (kINPen® MED) as a CAP source, using the three-dimensional Staphylococcus aureus immunocompetent biofilm system hpBIOM in addition to a standard planktonic test. Furthermore, skin cell compatibility was evaluated using a keratinocyte (HaCat) model. RESULTS: CAP treatment (0-240 s) followed by incubation (15, 120 min) within the CAP-treated media showed slight bactericidal efficacy under planktonic conditions but no effect on biofilms. However, indirect CAP treatment of keratinocytes performed under the same conditions resulted in a significant decrease in metabolic activity. Short CAP treatment and exposure time (30 s; 15 min) induced a slight increase in the metabolic activity; however, longer treatments and/or exposure times led to pronounced reductions up to 100%. These effects could partially be reversed by addition of catalase, indicating a dominant role of CAP-generated hydrogen peroxide. CONCLUSIONS: These results indicate that plasma treatment does not lead to the desired disinfection or significant reduction in the bacterial burden of Staphylococcus aureus in a wet milieu or in biofilms. Thus, treatment with CAP could not be recommended as a single anti-bacterial therapy for wounds but could be used to support standard treatments.


Assuntos
Antibacterianos/farmacologia , Argônio/farmacologia , Queratinócitos/efeitos dos fármacos , Gases em Plasma/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Pressão Atmosférica , Biofilmes/efeitos dos fármacos , Células HaCaT , Humanos , Viabilidade Microbiana , Pele/efeitos dos fármacos , Staphylococcus aureus/citologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia
7.
Front Microbiol ; 11: 564513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162949

RESUMO

Biofilms pose a relevant factor for wound healing impairment in chronic wounds. With 78% of all chronic wounds being affected by biofilms, research in this area is of high priority, especially since data for evidence-based selection of appropriate antimicrobials and antiseptics is scarce. Therefore, the objective of this study was to evaluate the anti-biofilm efficacy of commercially available hypochlorous wound irrigation solutions compared to established antimicrobials. Using an innovative complex in-vitro human plasma biofilm model (hpBIOM), quantitative reduction of Pseudomonas aeruginosa, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA) biofilms by three hypochlorous irrigation solutions [two <0.08% and one 0.2% sodium hypochlorite (NaClO)] was compared to a 0.04% polyhexanide (PHMB) irrigation solution and 0.1% octenidine-dihydrochloride/phenoxyethanol (OCT/PE). Efficacy was compared to a non-challenged planktonic approach, as well as with increased substance volume over a prolonged exposure (up to 72 h). Qualitative visualization of biofilms was performed by scanning electron microscopy (SEM). Both reference agents (OCT/PE and PHMB) induced significant biofilm reductions within 72 h, whereby high volume OCT/PE even managed complete eradication of P. aeruginosa and MRSA biofilms after 72 h. The tested hypochlorous wound irrigation solutions achieved no relevant penetration and eradication of biofilms despite increased volume and exposure. Only 0.2% NaClO managed a low reduction under prolonged exposure. The results demonstrate that low-dosed hypochlorous wound irrigation solutions are significantly less effective than PHMB-based irrigation solution and OCT/PE, thus unsuitable for biofilm eradication on their own. The used complex hpBIOM thereby mimics the highly challenging clinical wound micro-environment, providing a more profound base for future clinical translation.

8.
Skin Pharmacol Physiol ; 32(3): 162-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31018213

RESUMO

BACKGROUND: The number of patients who has a daily intake of antihypertensive drugs is rising, due to an also rising prevalence of lifestyle diseases. Interestingly, knowledge about effects of these drugs in terms of wound healing is low. OBJECTIVE: Based on a few differing studies, the idea arose that antihypertensives may have side effects on wound healing. METHODS: Five antihypertensive drugs from different substance classes (metoprolol, amlodipine, ramipril, hydrochlorothiazide, candesartan) were investigated, in terms of possible impacts on cell metabolism and migration of human skin fibroblasts and keratinocytes. Additionally, histological and immunohistochemical analyses were performed in a 3-dimensional (3D) wound model addressing the influence on regeneration processes, such as cell migration, metabolic activity, apoptosis and epidermal thickness. RESULTS: Hydrochlorothiazide and ramipril exerted inhibiting effects in nearly all analyses, interestingly, in serum equivalent doses. In contrast, candesartan and amlodipine induced slight positive effects in 2D as well as in 3D models. The previously described positive effects of ß-blockers could only partially be confirmed by metoprolol. Antihypertensive drugs affected fibroblasts more than keratinocytes - whether positively or negatively. CONCLUSION: Antihypertensive drugs have an influence on keratinocytes and fibroblasts; they are not neutral. Candesartan has the most positive effects on skin cells. For angiotensin-converting enzyme inhibitors and thiazide diuretics, wound healing in a 3D model is delayed. ß-Receptor blockers seem to improve wound healing to a small extent just like calcium channel blockers. These results should be evaluated in a clinical trial to verify their clinical relevance.


Assuntos
Anti-Hipertensivos/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Anlodipino/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Benzimidazóis/farmacologia , Compostos de Bifenilo , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Diuréticos/farmacologia , Fibroblastos/fisiologia , Humanos , Hidroclorotiazida/farmacologia , Queratinócitos/fisiologia , Metoprolol/farmacologia , Ramipril/farmacologia , Tetrazóis/farmacologia
9.
Thromb Haemost ; 118(8): 1470-1480, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30060257

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid and a constituent of high-density lipoprotein (HDL) exerting several atheroprotective effects in vitro. However, the few studies addressing anti-atherogenic effects of S1P in vivo have led to disparate results. We here examined atherosclerosis development in low-density lipoprotein receptor (LDL-R)-deficient (LDL-R-/-) mice with elevated endogenous S1P levels. METHODS AND RESULTS: Sub-lethally irradiated LDL-R-/- mice were transplanted with bone marrow deficient in sphingosine kinase 2 (SphK2), which led to the elevation of S1P concentrations in erythrocytes, plasma and HDL by approximately 1.5- to 2.0-fold in SphK2-/-/LDL-R-/- mice. Afterwards, mice were fed a Western diet for 14 weeks. Elevation of endogenous S1P significantly reduced atherosclerotic lesion formation by approximately half without affecting the plasma lipid profile. Furthermore, the macrophage content of atherosclerotic lesions and lipopolysaccharide-induced monocyte recruitment to the peritoneal cavity were reduced in SphK2-/-/LDL-R-/- mice. Studies using intra-vital microscopy revealed that endogenous S1P lowered leukocyte adhesion to capillary wall and decreased endothelial permeability to fluorescently labelled LDL. Moreover, SphK2-/-/LDL-R-/- mice displayed decreased levels of vascular cell adhesion molecule 1 in atherosclerotic lesions and in plasma. Studies in vitro demonstrated reduced monocyte adhesion and transport across an endothelial layer exposed to increasing S1P concentrations, murine plasma enriched in S1P or plasma obtained from SphK2-deficient animals. In addition, decreased permeability to fluorescence-labelled dextran beads or LDL was observed in S1P-treated endothelial cells. CONCLUSION: We conclude that raising endogenous S1P levels exerts anti-atherogenic effects in LDL-R-/- mice that are mediated by favourable modulation of endothelial function.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Células Endoteliais/metabolismo , Lisofosfolipídeos/sangue , Placa Aterosclerótica , Receptores de LDL/deficiência , Esfingosina/análogos & derivados , Animais , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Permeabilidade Capilar , Técnicas de Cocultura , Dieta Ocidental , Modelos Animais de Doenças , Células Endoteliais/patologia , Predisposição Genética para Doença , Humanos , Migração e Rolagem de Leucócitos , Lipoproteínas HDL/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de LDL/genética , Transdução de Sinais , Esfingosina/sangue , Células U937 , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/sangue
10.
PLoS One ; 12(12): e0186425, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216188

RESUMO

Wound healing is a complex and dynamic process with different distinct and overlapping phases from homeostasis, inflammation and proliferation to remodelling. Monitoring the healing response of injured tissue is of high importance for basic research and clinical practice. In traditional application, biological markers characterize normal and abnormal wound healing. Understanding functional relationships of these biological processes is essential for developing new treatment strategies. However, most of the present techniques (in vitro or in vivo) include invasive microscopic or analytical tissue sampling. In the present study, a non-invasive alternative for monitoring processes during wound healing is introduced. Within this context, hyperspectral imaging (HSI) is an emerging and innovative non-invasive imaging technique with different opportunities in medical applications. HSI acquires the spectral reflectance of an object, depending on its biochemical and structural characteristics. An in-vitro 3-dimensional (3-D) wound model was established and incubated without and with acute and chronic wound fluid (AWF, CWF), respectively. Hyperspectral images of each individual specimen of this 3-D wound model were assessed at day 0/5/10 in vitro, and reflectance spectra were evaluated. For analysing the complex hyperspectral data, an efficient unsupervised approach for clustering massive hyperspectral data was designed, based on efficient hierarchical decomposition of spectral information according to archetypal data points. It represents, to the best of our knowledge, the first application of an advanced Data Mining approach in context of non-invasive analysis of wounds using hyperspectral imagery. By this, temporal and spatial pattern of hyperspectral clusters were determined within the tissue discs and among the different treatments. Results from non-invasive imaging were compared to the number of cells in the various clusters, assessed by Hematoxylin/Eosin (H/E) staining. It was possible to correlate cell quantity and spectral reflectance during wound closure in a 3-D wound model in vitro.


Assuntos
Modelos Biológicos , Análise Espectral/métodos , Cicatrização , Automação , Células Cultivadas , Análise por Conglomerados , Humanos
11.
Dev Biol ; 369(2): 163-76, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22691363

RESUMO

The retina represents an ideal model system for studying developmental processes during morphogenesis. The knowledge of the precise regulation and combination of genetic pre-dispositions and environmental circumstances enables the understanding of pathologies and the subsequent development or/and improvement of therapeutic strategies. This study focused on the functional analysis of the extracellular matrix (ECM) molecule Tenascin C (Tnc) in the retinal stem/progenitor cell environment. In this perspective, a Tnc(-/-) mouse was examined for potential alterations in proliferation and differentiation programs by using immunohistochemistry, RT-PCR analysis and bioassays. It could be shown that both cycling G2-phase cells and early post-mitotic neurons were significantly increased in the retina due to Tnc-deficiency. Further investigations suggested that Tnc regulates these processes via the Wnt-signaling cascade. Therapeutic approaches in the treatment of degenerative diseases often integrate cell-replacement strategies. Retinal Müller glia cells represent the glia of the retina and are described to possess the ability to re-enter the cell cycle and generate neurons in response to injury. In this study, the de-differentiation was induced by FGF2. It was found out that Tnc influences the de-differentiation behavior of adherent Müller glia in vitro. Moreover, it was interesting to investigate the effect of the absence of Tnc on the composition of other components of the ECM. A special focus lay on the expression of a specifically sulfated carbohydrate motif on chondroitin sulfate glycosaminoglycan chains, which can be detected with the mAb 473HD. It was possible to note a significant increase of this particular chondroitin sulfate in the Tnc-deficient ECM.


Assuntos
Neuroglia/citologia , Neuroglia/fisiologia , Retina/citologia , Retina/embriologia , Tenascina/fisiologia , Animais , Compartimento Celular , Pontos de Checagem do Ciclo Celular , Desdiferenciação Celular , Diferenciação Celular , Proliferação de Células , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fase G2 , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Retina/fisiologia , Tenascina/deficiência , Tenascina/genética
12.
Exp Brain Res ; 198(1): 37-47, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19639307

RESUMO

The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.


Assuntos
Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/genética , Regeneração Nervosa/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Retina/metabolismo , Células-Tronco/metabolismo , Animais , Comunicação Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Lasers , Proteínas de Membrana/genética , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Recuperação de Função Fisiológica/genética , Retina/lesões , Retina/fisiopatologia , Tenascina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA