Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Netw Physiol ; 3: 1085347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323237

RESUMO

Introduction: Transient phenomena play a key role in coordinating brain activity at multiple scales, however their underlying mechanisms remain largely unknown. A key challenge for neural data science is thus to characterize the network interactions at play during these events. Methods: Using the formalism of Structural Causal Models and their graphical representation, we investigate the theoretical and empirical properties of Information Theory based causal strength measures in the context of recurring spontaneous transient events. Results: After showing the limitations of Transfer Entropy and Dynamic Causal Strength in this setting, we introduce a novel measure, relative Dynamic Causal Strength, and provide theoretical and empirical support for its benefits. Discussion: These methods are applied to simulated and experimentally recorded neural time series and provide results in agreement with our current understanding of the underlying brain circuits.

2.
PLoS Comput Biol ; 19(4): e1010983, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011110

RESUMO

Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic "field" signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings.


Assuntos
Modelos Neurológicos , Rede Nervosa , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia
3.
Nat Commun ; 13(1): 1535, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318323

RESUMO

A major debate about the neural correlates of conscious perception concerns its cortical organization, namely, whether it includes the prefrontal cortex (PFC), which mediates executive functions, or it is constrained within posterior cortices. It has been suggested that PFC activity during paradigms investigating conscious perception is conflated with post-perceptual processes associated with reporting the contents of consciousness or feedforward signals originating from exogenous stimulus manipulations and relayed via posterior cortical areas. We addressed this debate by simultaneously probing neuronal populations in the rhesus macaque (Macaca mulatta) PFC during a no-report paradigm, capable of instigating internally generated transitions in conscious perception, without changes in visual stimulation. We find that feature-selective prefrontal neurons are modulated concomitantly with subjective perception and perceptual suppression of their preferred stimulus during both externally induced and internally generated changes in conscious perception. Importantly, this enables reliable single-trial, population decoding of conscious contents. Control experiments confirm significant decoding of stimulus contents, even when oculomotor responses, used for inferring perception, are suppressed. These findings suggest that internally generated changes in the contents of conscious visual perception are reliably reflected within the activity of prefrontal populations in the absence of volitional reports or changes in sensory input.


Assuntos
Estado de Consciência , Córtex Pré-Frontal , Animais , Estado de Consciência/fisiologia , Macaca mulatta , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia
4.
Neural Comput ; 33(7): 1751-1817, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411270

RESUMO

Time series data sets often contain heterogeneous signals, composed of both continuously changing quantities and discretely occurring events. The coupling between these measurements may provide insights into key underlying mechanisms of the systems under study. To better extract this information, we investigate the asymptotic statistical properties of coupling measures between continuous signals and point processes. We first introduce martingale stochastic integration theory as a mathematical model for a family of statistical quantities that include the phase locking value, a classical coupling measure to characterize complex dynamics. Based on the martingale central limit theorem, we can then derive the asymptotic gaussian distribution of estimates of such coupling measure that can be exploited for statistical testing. Second, based on multivariate extensions of this result and random matrix theory, we establish a principled way to analyze the low-rank coupling between a large number of point processes and continuous signals. For a null hypothesis of no coupling, we establish sufficient conditions for the empirical distribution of squared singular values of the matrix to converge, as the number of measured signals increases, to the well-known Marchenko-Pastur (MP) law, and the largest squared singular value converges to the upper end of the MP support. This justifies a simple thresholding approach to assess the significance of multivariate coupling. Finally, we illustrate with simulations the relevance of our univariate and multivariate results in the context of neural time series, addressing how to reliably quantify the interplay between multichannel local field potential signals and the spiking activity of a large population of neurons.


Assuntos
Modelos Teóricos , Neurônios , Matemática
5.
Nature ; 589(7840): 96-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208951

RESUMO

The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.


Assuntos
Corpos Geniculados/fisiologia , Hipocampo/fisiologia , Lobo Occipital/fisiologia , Ponte/fisiologia , Sono/fisiologia , Ritmo Teta/fisiologia , Animais , Pareamento Cromossômico/fisiologia , Feminino , Homeostase , Macaca/fisiologia , Consolidação da Memória/fisiologia , Plasticidade Neuronal , Fases do Sono/fisiologia
7.
Commun Biol ; 1: 215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534607

RESUMO

The role of lateral prefrontal cortex (LPFC) in mediating conscious perception has been recently questioned due to potential confounds resulting from the parallel operation of task related processes. We have previously demonstrated encoding of contents of visual consciousness in LPFC neurons during a no-report task involving perceptual suppression. Here, we report a separate LPFC population that exhibits task-phase related activity during the same task. The activity profile of these neurons could be captured as canonical response patterns (CRPs), with their peak amplitudes sequentially distributed across different task phases. Perceptually suppressed visual input had a negligible impact on sequential firing and functional connectivity structure. Importantly, task-phase related neurons were functionally segregated from the neuronal population, which encoded conscious perception. These results suggest that neurons exhibiting task-phase related activity operate in the LPFC concurrently with, but segregated from neurons representing conscious content during a no-report task involving perceptual suppression.

8.
Neuron ; 100(5): 1224-1240.e13, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30482688

RESUMO

Hippocampal ripple oscillations likely support reactivation of memory traces that manifest themselves as temporally organized spiking of sparse neuronal ensembles. However, the network mechanisms concurring to achieve this function are largely unknown. We designed a multi-compartmental model of the CA3-CA1 subfields to generate biophysically realistic ripple dynamics from the cellular level to local field potentials. Simulations broadly parallel in vivo observations and support that ripples emerge from CA1 pyramidal spiking paced by recurrent inhibition. In addition to ripple oscillations, key coordination mechanisms involve concomitant aspects of network activity. Recurrent synaptic interactions in CA1 exhibit slow-gamma band coherence with CA3 input, thus offering a way to coordinate CA1 activities with CA3 inducers. Moreover, CA1 feedback inhibition controls the content of spontaneous replay during CA1 ripples, forming new mnemonic representations through plasticity. These insights are consistent with slow-gamma interactions and interneuronal circuit plasticity observed in vivo, suggesting a multifaceted ripple-related replay phenomenon.


Assuntos
Ondas Encefálicas , Hipocampo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Interneurônios/fisiologia , Macaca mulatta , Masculino , Potenciais da Membrana
9.
Front Neural Circuits ; 10: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471451

RESUMO

Multi-electrode recordings of local field potentials (LFPs) provide the opportunity to investigate the spatiotemporal organization of neural activity on the scale of several millimeters. In particular, the phases of oscillatory LFPs allow studying the coordination of neural oscillations in time and space and to tie it to cognitive processing. Given the computational roles of LFP phases, it is important to know how they relate to the phases of the underlying current source densities (CSDs) that generate them. Although CSDs and LFPs are distinct physical quantities, they are often (implicitly) identified when interpreting experimental observations. That this identification is problematic is clear from the fact that LFP phases change when switching to different electrode montages, while the underlying CSD phases remain unchanged. In this study we use a volume-conductor model to characterize discrepancies between LFP and CSD phase-patterns, to identify the contributing factors, and to assess the effect of different electrode montages. Although we focus on cortical LFPs recorded with two-dimensional (Utah) arrays, our findings are also relevant for other electrode configurations. We found that the main factors that determine the discrepancy between CSD and LFP phase-patterns are the frequency of the neural oscillations and the extent to which the laminar CSD profile is balanced. Furthermore, the presence of laminar phase-differences in cortical oscillations, as commonly observed in experiments, precludes identifying LFP phases with those of the CSD oscillations at a given cortical depth. This observation potentially complicates the interpretation of spike-LFP coherence and spike-triggered LFP averages. With respect to reference strategies, we found that the average-reference montage leads to larger discrepancies between LFP and CSD phases as compared with the referential montage, while the Laplacian montage reduces these discrepancies. We therefore advice to conduct analysis of two-dimensional LFP recordings using the Laplacian montage.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos , Modelos Neurológicos , Animais , Humanos
10.
Proc Natl Acad Sci U S A ; 112(46): E6379-87, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26540729

RESUMO

Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.


Assuntos
Ondas Encefálicas/fisiologia , Região CA1 Hipocampal , Imageamento por Ressonância Magnética , Memória/fisiologia , Neocórtex , Animais , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/fisiologia , Macaca mulatta , Neocórtex/diagnóstico por imagem , Neocórtex/fisiologia , Radiografia
11.
PLoS Biol ; 13(9): e1002257, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394205

RESUMO

Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.


Assuntos
Córtex Visual/fisiologia , Animais , Macaca mulatta
12.
Neuroimage ; 55(4): 1536-47, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21276859

RESUMO

Decoding experimental conditions from single trial Electroencephalographic (EEG) signals is becoming a major challenge for the study of brain function and real-time applications such as Brain Computer Interface. EEG source reconstruction offers principled ways to estimate the cortical activities from EEG signals. But to what extent it can enhance informative brain signals in single trial has not been addressed in a general setting. We tested this using the minimum norm estimate solution (MNE) to estimate spectral power and coherence features at the cortical level. With a fast implementation, we computed a support vector machine (SVM) classifier output from these quantities in real-time, without prior on the relevant functional networks. We applied this approach to single trial decoding of ongoing mental imagery tasks using EEG data recorded in 5 subjects. Our results show that reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level approach in terms of information transfer and also reduces redundancy between coherence and power features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients reflect the most informative features of network activity, showing an important contribution of localized motor and sensory brain areas, and of coherence between areas up to 6cm distance. This study provides a computationally efficient and interpretable strategy to extract information from functional networks at the cortical level in single trial. Moreover, this sets a general framework to evaluate the performance of EEG source reconstruction methods by their decoding abilities.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Eletroencefalografia/métodos , Potencial Evocado Motor/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Adulto , Algoritmos , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Neurológicos
13.
J Comput Neurosci ; 29(3): 547-66, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20396940

RESUMO

Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of the signal recorded from extracellular electrodes; yet these techniques are hard to apply to real data. To address the above issues, in this study we develop a method to compute fast and reliably the amount of TE from experimental time series of extracellular potentials. The method consisted in adapting efficiently the calculation of TE to analog signals and in providing appropriate sampling bias corrections. We then used this method to quantify the strength and significance of causal interaction between frequency bands of field potentials and spikes recorded from primary visual cortex of anaesthetized macaques, both during spontaneous activity and during binocular presentation of naturalistic color movies. Causal interactions between different frequency bands were prominent when considering the signals at a fine (ms) temporal resolution, and happened with a very short (ms-scale) delay. The interactions were much less prominent and significant at coarser temporal resolutions. At high temporal resolution, we found strong bidirectional causal interactions between gamma-band (40-100 Hz) and slower field potentials when considering signals recorded within a distance of 2 mm. The interactions involving gamma bands signals were stronger during movie presentation than in absence of stimuli, suggesting a strong role of the gamma cycle in processing naturalistic stimuli. Moreover, the phase of gamma oscillations was playing a stronger role than their amplitude in increasing causations with slower field potentials and spikes during stimulation. The dominant direction of causality was mainly found in the direction from MUA or gamma frequency band signals to lower frequency signals, suggesting that hierarchical correlations between lower and higher frequency cortical rhythms are originated by the faster rhythms.


Assuntos
Potenciais Evocados/fisiologia , Espaço Extracelular/fisiologia , Teoria da Informação , Córtex Visual/fisiologia , Algoritmos , Animais , Viés , Interpretação Estatística de Dados , Eletroencefalografia , Entropia , Modelos Lineares , Macaca , Modelos Neurológicos , Estimulação Luminosa
14.
Clin Neurophysiol ; 119(4): 897-908, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18296110

RESUMO

OBJECTIVE: Tracking the level of performance in cognitive tasks may be useful in environments, such as aircraft, in which the awareness of the pilots is critical for security. In this paper, the usefulness of EEG for the prediction of performance is investigated. METHODS: We present a new methodology that combines various ongoing EEG measurements to predict performance level during a cognitive task. We propose a voting approach that combines the outputs of elementary support vector machine (SVM) classifiers derived from various sets of EEG parameters in different frequency bands. The spectral power and phase synchrony of the oscillatory activities are used to classify the periods of rapid reaction time (RT) versus the slow RT responses of each subject. RESULTS: The voting algorithm significantly outperforms classical SVM and gives a good average classification accuracy across 12 subjects (71%) and an average information transfer rate (ITR) of 0.49bit/min. The main discriminating activities are laterally distributed theta power and anterio-posterior alpha synchronies, possibly reflecting the role of a visual-attentional network in performance. CONCLUSIONS: Power and synchrony measurements enable the discrimination between periods of high average reaction time versus periods of low average reaction time in a same subject. Moreover, the proposed approach is easy to interpret as it combines various types of measurements for classification, emphasizing the most informative. SIGNIFICANCE: Ongoing EEG recordings can predict the level of performance during a cognitive task. This can lead to real-time EEG monitoring devices for the anticipation of human mistakes.


Assuntos
Algoritmos , Mapeamento Encefálico , Encéfalo/fisiologia , Cognição/fisiologia , Eletroencefalografia , Análise e Desempenho de Tarefas , Humanos
15.
Biol Res ; 40(4): 415-37, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18575676

RESUMO

Classification algorithms help predict the qualitative properties of a subject's mental state by extracting useful information from the highly multivariate non-invasive recordings of his brain activity. In particular, applying them to Magneto-encephalography (MEG) and electro-encephalography (EEG) is a challenging and promising task with prominent practical applications to e.g. Brain Computer Interface (BCI). In this paper, we first review the principles of the major classification techniques and discuss their application to MEG and EEG data classification. Next, we investigate the behavior of classification methods using real data recorded during a MEG visuomotor experiment. In particular, we study the influence of the classification algorithm, of the quantitative functional variables used in this classifier, and of the validation method. In addition, our findings suggest that by investigating the distribution of classifier coefficients, it is possible to infer knowledge and construct functional interpretations of the underlying neural mechanisms of the performed tasks. Finally, the promising results reported here (up to 97% classification accuracy on 1-second time windows) reflect the considerable potential of MEG for the continuous classification of mental states.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/classificação , Magnetoencefalografia/classificação , Atividade Motora/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Algoritmos , Inteligência Artificial , Análise Discriminante , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
16.
Biol. Res ; 40(4): 415-437, 2007. ilus, graf
Artigo em Inglês | LILACS | ID: lil-484869

RESUMO

Classification algorithms help predict the qualitative properties of a subject's mental state by extracting useful information from the highly multivariate non-invasive recordings of his brain activity. In particular, applying them to Magneto-encephalography (MEG) and electro-encephalography (EEG) is a challenging and promising task with prominent practical applications to e.g. Brain Computer Interface (BCI). In this paper, we first review the principles of the major classification techniques and discuss their application to MEG and EEG data classification. Next, we investigate the behavior of classification methods using real data recorded during a MEG visuomotor experiment. In particular, we study the influence of the classification algorithm, of the quantitative functional variables used in this classifier, and of the validation method. In addition, our findings suggest that by investigating the distribution of classifier coefficients, it is possible to infer knowledge and construct functional interpretations of the underlying neural mechanisms of the performed tasks. Finally, the promising results reported here (up to 97 percent classification accuracy on 1-second time windows) reflect the considerable potential of MEG for the continuous classification of mental states.


Assuntos
Humanos , Encéfalo/fisiologia , Eletroencefalografia/classificação , Magnetoencefalografia/classificação , Atividade Motora/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Algoritmos , Inteligência Artificial , Análise Discriminante , Modelos Lineares , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA