Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(49): e2203241120, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015839

RESUMO

The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.


Assuntos
Bacillaceae , Bacillus , Culex , Praguicidas , Animais , Bacillaceae/química , Bacillaceae/metabolismo , Controle de Mosquitos , Larva/metabolismo
2.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279443

RESUMO

Bacillus thuringiensis (Bt) proteins are an environmentally safe and effective alternative to chemical pesticides and have been used as biopesticides, with great commercial success, for over 50 years. Global agricultural production is predicted to require a 70% increase until 2050 to provide for an increasing population. In addition to agriculture, Bt proteins are utilized to control human vectors of disease-namely mosquitoes-which account for >700 000 deaths annually. The evolution of resistance to Bt pesticial toxins threatens the progression of sustainable agriculture. Whilst Bt protein toxins are heavily utilized, the exact mechanisms behind receptor binding and toxicity are unknown. It is critical to gain a better understanding of these mechanisms in order to engineer novel toxin variants and to predict, and prevent, future resistance evolution. This review focuses on the role of carbohydrate binding in the toxicity of the most utilized group of Bt pesticidal proteins-three domain Cry (3D-Cry) toxins.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Humanos , Inseticidas/metabolismo , Endotoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Mosquitos Vetores , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Glicoconjugados
3.
Toxins (Basel) ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36548760

RESUMO

Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal ß-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.


Assuntos
Aedes , Bacillus thuringiensis , Culex , Inseticidas , Animais , Bacillus thuringiensis/metabolismo , Galactose/metabolismo , Aedes/metabolismo , Inseticidas/química , Culex/metabolismo , Proteínas de Bactérias/metabolismo , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo
4.
J Neurochem ; 157(3): 764-780, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368303

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited childhood neurodegenerative disorders. In addition to the accumulation of auto-fluorescent storage material in lysosomes, NCLs are largely characterised by region-specific neuroinflammation that can predict neuron loss. These phenotypes suggest alterations in the extracellular environment-making the secretome an area of significant interest. This study investigated the secretome in the CLN6 (ceroid-lipofuscinosis neuronal protein 6) variant of NCL. To investigate the CLN6 secretome, we co-cultured neurons and glia isolated from Cln6nclf or Cln6± mice, and utilised mass spectrometry to compare protein constituents of conditioned media. The significant changes noted in cathepsin enzymes, were investigated further via western blotting and enzyme activity assays. Viral-mediated gene therapy was used to try and rescue the wild-type phenotype and restore the secretome-both in vitro in co-cultures and in vivo in mouse plasma. In Cln6nclf cells, proteomics revealed a marked increase in catabolic and cytoskeletal-associated proteins-revealing new similarities between the pathogenic signatures of NCLs with other neurodegenerative disorders. These changes were, in part, corrected by gene therapy intervention, suggesting these proteins as candidate in vitro biomarkers. Importantly, these in vitro changes show promise for in vivo translation, with Cathepsin L (CTSL) activity reduced in both co-cultures and Cln6nclf plasma samples post gene-therapy. This work suggests the secretome plays a role in CLN6 pathogenesis and highlights its potential use as an in vitro model. Proteomic changes present a list of candidate biomarkers for monitoring disease and assessing potential therapeutics in future studies.


Assuntos
Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Animais , Biomarcadores , Catepsina L/biossíntese , Técnicas de Cocultura , Biologia Computacional , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Terapia Genética , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Neurônios/metabolismo , Cultura Primária de Células , Proteômica
5.
Chem Sci ; 11(6): 1599-1606, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32206278

RESUMO

A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 µM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 µM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.

6.
Neurobiol Dis ; 100: 62-74, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28065762

RESUMO

Batten disease (neuronal ceroid lipofuscinosis) refers to a group of neurodegenerative lysosomal storage diseases predominantly affecting children. There are currently no effective treatments, and the functions of many of the associated gene products are unknown. Here we characterise fetal neural cultures from two genetically distinct sheep forms of Batten disease, with mutations in the lysosomal protein encoding gene CLN5 and endoplasmic reticulum membrane protein encoding gene CLN6, respectively. We found similar reductions in autophagy, acidic organelles and synaptic recycling in both forms compared to unaffected cells. We then developed a high-throughput screen and tested for correction of deficient cells with lentiviral-mediated CLN5 or CLN6 gene transfer and fibrate drugs, gemfibrozil and fenofibrate in CLN6 deficient neural cultures. These assays provide a simple system to rapidly screen candidate therapies or libraries of drugs prior to in vivo testing.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Animais , Feminino , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Ovinos
7.
Biochim Biophys Acta ; 1852(10 Pt B): 2292-300, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25957554

RESUMO

The neuronal ceroid lipofuscinoses represent a group of severe childhood lysosomal storage diseases. With at least 13 identified variants they are the most common cause of inherited neurodegeneration in children. These diseases share common pathological characteristics including motor problems, vision loss, seizures, and cognitive decline, culminating in premature death. Currently, no form of the disease can be treated or cured, with only palliative care to minimise discomfort. This review focuses on current and potentially ground-breaking clinical trials, including small molecule, enzyme replacement, stem cell, and gene therapies, in the development of effective treatments for the various disease subtypes. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA