Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
iScience ; 27(6): 109983, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38827404

RESUMO

Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.

2.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790957

RESUMO

Tendinopathies continue to be a challenge for both patients and the medical teams providing care as no universal clinical practice guidelines have been established. In general, tendinopathies are typically characterized by prolonged, localized, activity-related pain with abnormalities in tissue composition, cellularity, and microstructure that may be observed on imaging or histology. In the lower limb, tendinopathies affecting the Achilles and the patellar tendons are the most common, showing a high incidence in athletic populations. Consistent diagnosis and management have been challenged by a lack of universal consensus on the pathophysiology and clinical presentation. Current management is primarily based on symptom relief and often consists of medications such as non-steroidal anti-inflammatories, injectable therapies, and exercise regimens that typically emphasize progressive eccentric loading of the affected structures. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. In the present pilot in vivo study, we have characterized the structural and cellular alterations that occur soon after tendon insult in models of both Achilles and patellar tendinopathy. Upon injury, CD146+ TSPCs are recruited from the interfascicular tendon matrix to the vicinity of the paratenon, whereas the observed reduction in M1 macrophage polarization is related to a greater abundance of reparative CD146+ TSPCs in situ. The robust TSPCs' immunomodulatory effects on macrophages were also demonstrated in in vitro settings where TSPCs can effectively polarize M1 macrophages towards an anti-inflammatory therapeutic M2 phenotype. Although preliminary, our findings suggest CD146+ TSPCs as a key phenotype that could be explored in the development of targeted regenerative therapies for tendinopathies.

3.
PLoS One ; 19(4): e0301432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626169

RESUMO

Diffusion within extracellular matrix is essential to deliver nutrients and larger metabolites to the avascular region of the meniscus. It is well known that both structure and composition of the meniscus vary across its regions; therefore, it is crucial to fully understand how the heterogenous meniscal architecture affects its diffusive properties. The objective of this study was to investigate the effect of meniscal region (core tissue, femoral, and tibial surface layers) and molecular weight on the diffusivity of several molecules in porcine meniscus. Tissue samples were harvested from the central area of porcine lateral menisci. Diffusivity of fluorescein (MW 332 Da) and three fluorescence-labeled dextrans (MW 3k, 40k, and 150k Da) was measured via fluorescence recovery after photobleaching. Diffusivity was affected by molecular size, decreasing as the Stokes' radius of the solute increased. There was no significant effect of meniscal region on diffusivity for fluorescein, 3k and 40k dextrans (p>0.05). However, region did significantly affect the diffusivity of 150k Dextran, with that in the tibial surface layer being larger than in the core region (p = 0.001). Our findings contribute novel knowledge concerning the transport properties of the meniscus fibrocartilage. This data can be used to advance the understanding of tissue pathophysiology and explore effective approaches for tissue restoration.


Assuntos
Dextranos , Menisco , Animais , Suínos , Dextranos/metabolismo , Menisco/metabolismo , Meniscos Tibiais/fisiologia , Fibrocartilagem/metabolismo , Fluoresceínas/metabolismo
4.
Cells ; 13(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534328

RESUMO

During the progression of knee osteoarthritis (OA), the synovium and infrapatellar fat pad (IFP) can serve as source for Substance P (SP) and calcitonin gene-related peptide (CGRP), two important pain-transmitting, immune, and inflammation modulating neuropeptides. Our previous studies showed that infrapatellar fat pad-derived mesenchymal stem/stromal cells (MSC) acquire a potent immunomodulatory phenotype and actively degrade Substance P via CD10 both in vitro and in vivo. On this basis, our hypothesis is that CD10-bound IFP-MSC sEVs can be engineered to target CGRP while retaining their anti-inflammatory phenotype. Herein, human IFP-MSC cultures were transduced with an adeno-associated virus (AAV) vector carrying a GFP-labelled gene for a CGRP antagonist peptide (aCGRP). The GFP positive aCGRP IFP-MSC were isolated and their sEVs' miRNA and protein cargos were assessed using multiplex methods. Our results showed that purified aCGRP IFP-MSC cultures yielded sEVs with cargo of 147 distinct MSC-related miRNAs. Reactome analysis of miRNAs detected in these sEVs revealed strong involvement in the regulation of target genes involved in pathways that control pain, inflammation and cartilage homeostasis. Protein array of the sEVs cargo demonstrated high presence of key immunomodulatory and reparative proteins. Stimulated macrophages exposed to aCGRP IFP-MSC sEVs demonstrated a switch towards an alternate M2 status. Also, stimulated cortical neurons exposed to aCGRP IFP-MSC sEVs modulate their molecular pain signaling profile. Collectively, our data suggest that yielded sEVs can putatively target CGRP in vivo, while containing potent anti-inflammatory and analgesic cargo, suggesting the promise for novel sEVs-based therapeutic approaches to diseases such as OA.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Substância P , Inflamação , Dor , Vesículas Extracelulares/metabolismo , Anti-Inflamatórios , Células Estromais/metabolismo
5.
Orthop J Sports Med ; 11(10): 23259671231201832, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37846315

RESUMO

Background: Both partial- and full-thickness quadriceps tendon (QT) graft harvests are used for anterior cruciate ligament reconstruction (ACLR). Purpose: To evaluate the impact of QT graft harvest depth (full or partial thickness) on electromechanical delay (EMD), peak torque (PT), and rate of torque development (RTD) after ACLR. Study Design: Controlled laboratory study. Methods: A total of 26 patients who underwent either partial-thickness (n = 14) or full-thickness (n = 12) autograft QT ACLR were recruited between June and November 2021 (>1 year before participation). Patients performed isokinetic knee extension testing with surface electromyography of the quadriceps muscles. Mixed repeated-measures analysis of variance with least significant difference post hoc testing was used to determine significant differences (mean difference [MD] ± SE) or interactions for all variables. Results: A significant speed×depth interaction was seen for the vastus medialis (P = .005). Pairwise analyses showed significantly longer EMD for the partial-thickness graft than the full-thickness graft (MD ± SE, 19.92 ± 6.33 ms; P = .006). In the partial-thickness graft, the EMD was significantly longer at 90 deg/s versus 180 deg/s (MD ± SE, 19.11 ± 3.95 ms; P < .001) and 300 deg/s (MD ± SE, 16.43 ± 5.30 ms; P = .006). For PT, the full-thickness graft had a significantly lower PT on the operated versus nonoperated side at all speeds (MD ± SE: 90 deg/s, -57.0 ± 10.5 N·m, P < .001; 180 deg/s, -26.0 ± 10.2 N·m, P = .020; 300 deg/s, -20.3 ± 8.9 N·m, P = .034). For RTD, the full-thickness graft showed significantly Slower RTD for the operated versus nonoperated side at all time points (MD ± SD: RTD0-25 (0-25% of the range of motion), -131.3 ± 50.9 N·m/s, P = .018; RTD25-50, -197.0 ± 72.5 N·m/s, P = .014; RTD50-75, -113.3 ± 39.8 N·m/s, P = .013; RTD75-100, -149.4 ± 35.9 N·m/s, P < .001). Conclusion: Compared with partial-thickness QT, full-thickness QT showed a shorter vastus medialis EMD at higher loading, and therefore greater stiffness, as well as slower RTD and lower PT across all testing speeds. Clinical Relevance: The impact of full-thickness QT autograft on EMD and neuromuscular performance should be considered for ACLR.

6.
Bioengineering (Basel) ; 10(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892870

RESUMO

Diabetic foot ulcer (DFU) is associated with neuropathy and/or peripheral artery disease of the lower limb in diabetic patients, affecting quality of life and leading to repeated hospitalizations and infections [...].

7.
Bioengineering (Basel) ; 10(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892917

RESUMO

Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone regeneration arise. To determine the appropriate amount of bone to be removed, preoperative imaging techniques such as bone and CT scans are employed. To prevent local recurrence, the current standard of care suggests maintaining bony and soft tissue margins from 3 to 7 cm beyond the tumor. The amount of bone removed in an OS patient leaves too large of a deficit for bone to form on its own and requires reconstruction with metal implants or allografts. Both methods require the bone to heal, either to the implant or across the allograft junction, often in the setting of marrow-killing chemotherapy. Therefore, the issue of bone regeneration within the surgically resected margins remains an important challenge for the patient, family, and treating providers. Mesenchymal stem/stromal cells (MSCs) are potential agents for enhancing bone regeneration post tumor resection. MSCs, used with scaffolds and growth factors, show promise in fostering bone regeneration in OS cases. We spotlight two MSC types-bone marrow-derived (BM-MSCs) and adipose tissue-derived (ASCs)-highlighting their bone regrowth facilitation and immunomodulatory effects on immune cells like macrophages and T cells, enhancing therapeutic outcomes. The objective of this review is two-fold: review work demonstrating any ability of MSCs to target the deranged immune system in the OS microenvironment, and synthesize the available literature on the use of MSCs as a therapeutic option for stimulating bone regrowth in OS patients post bone resection. When it comes to repairing bone defects, both MB-MSCs and ASCs hold great potential for stimulating bone regeneration. Research has showcased their effectiveness in reconstructing bone defects while maintaining a non-tumorigenic role following wide resection of bone tumors, underscoring their capability to enhance bone healing and regeneration following tumor excisions.

8.
J Biomech ; 159: 111793, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725886

RESUMO

Vision-based methods using RGB inputs for human pose estimation have grown in recent years but have undergone limited testing in clinical and biomechanics research areas like gait analysis. The purpose of the present study was to compare lower extremity kinematics during overground gait between a traditional marker-based approach and a commercial multi-view markerless system in a sample of subjects including young adults, older adults, and adults diagnosed with Parkinson's disease. A convenience sample of 35 adults between the age of 18-85 years were included in this study, yielding a total of 114 trials and 228 gait cycles that were compared between systems. A total of 30 time normalized waveforms, including three-dimensional joint centers, segment angles, and joint angles were compared between systems using root mean-squared error (RMSE), range of motion difference (ΔROM), Pearson correlation coefficients (r), and interclass correlation coefficients (ICC). RMSEs for joint center positions were less than 28 mm in all joints with correlations indicating good to excellent agreement. RMSEs for segment and joint angles were in range of previous results, with highest agreement between systems in the sagittal plane. ΔROM differences were within reference values that characterize clinical groups like Parkinson's disease, stroke, or knee osteoarthritis. Further improvements in pelvis tracking, markerless keypoint model definitions, and standardization of comparison study protocols are needed. Nevertheless, markerless solutions seem promising toward unrestricted motion analysis in biomechanics research and clinical settings.


Assuntos
Captura de Movimento , Doença de Parkinson , Adulto Jovem , Humanos , Idoso , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Marcha , Movimento (Física)
9.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37662374

RESUMO

Knee osteoarthritis (KOA) is a degenerative disease resulting from mechanical overload, where direct physical impacts on chondrocytes play a crucial role in disease development by inducing inflammation and extracellular matrix degradation. However, the signaling cascades that sense these physical impacts and induce the pathogenic transcriptional programs of KOA remain to be defined, which hinders the identification of novel therapeutic approaches. Recent studies have implicated a crucial role of Hippo signaling in osteoarthritis. Since Hippo signaling senses mechanical cues, we aimed to determine its role in chondrocyte responses to mechanical overload. Here we show that mechanical loading induces the expression of inflammatory and matrix-degrading genes by activating the nuclear factor-kappaB (NFκB) pathway in a Hippo-dependent manner. Applying mechanical compressional force to 3-dimensional cultured chondrocytes activated NFκB and induced the expression of NFκB target genes for inflammation and matrix degradation (i.e., IL1ß and ADAMTS4). Interestingly, deleting the Hippo pathway effector YAP or activating YAP by deleting core Hippo kinases LATS1/2 blocked the NFκB pathway activation induced by mechanical loading. Consistently, treatment with a LATS1/2 kinase inhibitor abolished the upregulation of IL1ß and ADAMTS4 caused by mechanical loading. Mechanistically, mechanical loading activates Protein Kinase C (PKC), which activates NFκB p65 by phosphorylating its Serine 536. Furthermore, the mechano-activation of both PKC and NFκB p65 is blocked in LATS1/2 or YAP knockout cells, indicating that the Hippo pathway is required by this mechanoregulation. Additionally, the mechanical loading-induced phosphorylation of NFκB p65 at Ser536 is blocked by the LATS1/2 inhibitor Lats-In-1 or the PKC inhibitor AEB-071. Our study suggests that the interplay of the Hippo signaling and PKC controls NFκB-mediated inflammation and matrix degradation in response to mechanical loading. Chemical inhibitors targeting Hippo signaling or PKC can prevent the mechanoresponses of chondrocytes associated with inflammation and matrix degradation, providing a novel therapeutic strategy for KOA.

10.
Rheumatol Int ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597058

RESUMO

Knee osteoarthritis (KOA) is a chronic disease accompanied by debilitating symptoms including pain, stiffness, and limited physical functionality, which have been shown to be associated with pain catastrophizing. Previous studies have revealed racial discrepancies in pain catastrophizing, notably between Hispanics and non-Hispanics while pointing to potential health disparities. Using a conceptual model, this study aimed to investigate racial differences in associations between KOA symptoms with specific pain catastrophizing domains (rumination, magnification, and helplessness). Patients with KOA (n = 253; 147 Hispanics, 106 non-Hispanic Whites) completed a survey that included measures of knee symptoms, pain catastrophizing, and demographic variables. Structural equation modeling revealed that among Hispanics, each pain catastrophizing domain (rumination, magnification, and helplessness) was associated with at least two symptomatic experiences, including pain severity and difficulty in physical function. Specifically, pain severity was associated with (a) rumination: ß = 0.48, p < 0.001, (b) magnification: ß = 0.31, p = 0.003; and (c) helplessness: ß = 0.39, p < 0.001). Additionally, a lower score in physical function was associated with higher magnification (ß = 0.26, p = 0.01), and helplessness (ß = 0.25, p = 0.01). Among non-Hispanic White patients, pain severity was further associated with two domains of pain catastrophizing, including rumination (ß = 0.39, p < 0.001) and helplessness (ß = 0.35, p = 0.01). In addition, association pathways for demographic variables revealed that older Hispanics experienced greater challenges with higher pain severity (ß = 0.26, p = 0.01) and greater difficulty with physical function (ß = 0.31, p < 0.001) while Hispanics females experienced higher pain (ß = 0.19, p = 0.03). These findings highlight the importance of designing tailored interventions that consider key demographic factors such as age, and gender, to improve physical function that might alleviate pain catastrophizing among Hispanics with KOA.

11.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508489

RESUMO

The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).


Assuntos
Cartilagem Articular , Vesículas Extracelulares , MicroRNAs , Osteoartrite , Sinovite , Animais , Humanos , Sinovite/metabolismo , Osteoartrite/metabolismo , Vesículas Extracelulares/metabolismo , Articulação do Joelho/metabolismo , MicroRNAs/metabolismo , Cartilagem Articular/metabolismo , Neprilisina/metabolismo , Fibrose , Homeostase , Células Estromais/metabolismo
12.
J Biomech ; 157: 111712, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421911

RESUMO

Video-based motion analysis systems are emerging in the biomechanics research community, yet there is limited exploration of kinetics prediction using RGB-markerless kinematics and musculoskeletal modeling. This project aimed to provide ground reaction force (GRF) and ground reaction moment (GRM) predictions during over-ground gait by introducing RGB-markerless kinematics into a musculoskeletal modeling framework. Full-body markerless kinematic inputs and musculoskeletal modeling were used to obtain GRF and GRM predictions which were compared to measured force plate values. The markerless-driven predictions yielded average root mean-squared error (RMSE) in the stance phase of 0.035 ± 0.009 N∙BW-1, 0.070 ± 0.014 N∙BW-1, and 0.155 ± 0.041 N∙BW-1 in the mediolateral (ML), anteroposterior (AP), and vertical (V) GRFs. This was accompanied by moderate to high correlations and interclass correlation coefficients (ICC) indicating moderate to good agreement between measured and predicted values (95% Confidence Inervals: ML = [0.479, 0.717], AP = [0.714, 0.856], V = [0.803, 0.905]). For ground reaction moments (GRM), average RMSE was 0.029 ± 0.013 Nm∙BWH-1, 0.014 ± 0.005 Nm∙BWH-1, and 0.005 ± 0.002 Nm∙BWH-1 in the sagittal, frontal, and transverse planes. Pearson correlations and ICCs indicated poor agreement between systems for GRMs (95% Confidence Intervals: Sagittal = [0.314, 0.608], Frontal = [0.006, 0.373], Transverse = [0.269, 0.570]). Currently, RMSE is larger than target thresholds set from studies using Kinect, inertial, or marker-based kinematic drivers; but methodological considerations highlighted in this work may help guide follow-up iterations. At this point, further use in research or clinical practice is cautioned until methodological considerations are addressed, although results are promising at this point.


Assuntos
Marcha , Fenômenos Mecânicos , Cinética , Fenômenos Biomecânicos , Movimento (Física)
13.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408255

RESUMO

Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Senoterapia , Vesículas Extracelulares/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
14.
Front Bioeng Biotechnol ; 11: 1205512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324417

RESUMO

Introduction: The knee meniscus distributes and dampens mechanical loads. It is composed of water (∼70%) and a porous fibrous matrix (∼30%) with a central core that is reinforced by circumferential collagen fibers enclosed by mesh-like superficial tibial and femoral layers. Daily loading activities produce mechanical tensile loads which are transferred through and dissipated by the meniscus. Therefore, the objective of this study was to measure how tensile mechanical properties and extent of energy dissipation vary by tension direction, meniscal layer, and water content. Methods: The central regions of porcine meniscal pairs (n = 8) were cut into tensile samples (4.7 mm length, 2.1 mm width, and 0.356 mm thickness) from core, femoral and tibial components. Core samples were prepared parallel (circumferential) and perpendicular (radial) to the fibers. Tensile testing consisted of frequency sweeps (0.01-1Hz) followed by quasi-static loading to failure. Dynamic testing yielded energy dissipation (ED), complex modulus (E*), and phase shift (δ) while quasi-static tests yielded Young's Modulus (E), ultimate tensile strength (UTS), and strain at UTS (εUTS). To investigate how ED is influenced by the specific mechanical parameters, linear regressions were performed. Correlations between sample water content (φw) and mechanical properties were investigated. A total of 64 samples were evaluated. Results: Dynamic tests showed that increasing loading frequency significantly reduced ED (p < 0.05). Circumferential samples had higher ED, E*, E, and UTS than radial ones (p < 0.001). Stiffness was highly correlated with ED (R2 > 0.75, p < 0.01). No differences were found between superficial and circumferential core layers. ED, E*, E, and UTS trended negatively with φw (p < 0.05). Discussion: Energy dissipation, stiffness, and strength are highly dependent on loading direction. A significant amount of energy dissipation may be associated with time-dependent reorganization of matrix fibers. This is the first study to analyze the tensile dynamic properties and energy dissipation of the meniscus surface layers. Results provide new insights on the mechanics and function of meniscal tissue.

15.
Osteoarthr Cartil Open ; 5(2): 100360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37122844

RESUMO

Objective: Knee meniscus tissue is partly vascularized, meaning that nutrients must be transported through the extracellular matrix of the avascular portion to reach resident cells. Similarly, drugs used as therapeutic agents to treat meniscal pathologies rely on transport through the tissue. The driving force of diffusive transport is the gradient of concentration, which depends on molecular solubility. The meniscus is organized into a core region sandwiched between the tibial and femoral superficial layers. Structural differences exist across meniscal regions; therefore, regional differences in solubility are also hypothesized. Methods: Samples from the core, tibial and femoral layers were obtained from 5 medial and 5 lateral porcine menisci. The partition coefficient (K) of fluorescein, 3 â€‹kDa and 40 â€‹kDa dextrans in the layers of the meniscus was measured using an equilibration experiment. The effect of meniscal compartment, layer, and solute molecular weight on K was analyzed using a three-way ANOVA. Results: K ranged from a high of ∼2.9 in fluorescein to a low of ∼0.1 in 40 â€‹kDa dextran and was inversely related to the solute molecular weight across all tissue regions. Tissue layer only had a significant effect on partitioning of 40k Dex solute, which was lower in the tibial surface layer relative to the core (p â€‹= â€‹0.032). Conclusion: This study provides insight into depth-dependent partitioning in the meniscus, indicating the limiting effect of the meniscus superficial layer on solubility increases with solute molecular size. This illustrates how the surface layers could potentially reduce the effectiveness of drug delivery therapies incorporating large molecules (>40 â€‹kDa).

16.
J Biomech ; 155: 111645, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216895

RESUMO

Markerless motion capture methods are continuously in development to target limitations encountered in marker-, sensor-, or depth-based systems. Previous evaluation of the KinaTrax markerless system was limited by differences in model definitions, gait event methods, and a homogenous subject sample. The purpose of this work was to evaluate the accuracy of spatiotemporal parameters in the markerless system with an updated markerless model, coordinate- and velocity-based gait events, and subjects representing young adult, older adult, and Parkinson's disease groups. Fifty-seven subjects and 216 trials were included in this analysis. Interclass correlation coefficients showed excellent agreement between the markerless system and a marker-based reference system for all spatial parameters. Temporal variables were similar, except swing time which showed good agreement. Concordance correlation coefficients were similar with all but swing time showing moderate to almost perfect concordance. Bland-Altman bias and limits of agreement (LOA) were small and improved from previous evaluations. Parameters showed similar agreement across coordinate- and velocity-based gait methods with the latter showing generally smaller LOAs. Improvements in spatiotemporal parameters in the present evaluation was due to inclusion of keypoints at the calcanei in the markerless model. Consistency in the calcanei keypoints relative to heel marker placements may improve results further. Similar to previous work, LOAs are within boundaries to detect differences in clinical groups. Results support the use of the markerless system for estimation of spatiotemporal parameters across age and clinical groups, but caution should be taken when generalizing findings due to remaining error in kinematic gait event methods.


Assuntos
Inteligência Artificial , Doença de Parkinson , Adulto Jovem , Humanos , Idoso , Captura de Movimento , Marcha , Extremidade Inferior , Fenômenos Biomecânicos , Análise Espaço-Temporal
17.
Front Bioeng Biotechnol ; 11: 1040762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741745

RESUMO

Tendinopathies encompass a highly prevalent, multi-faceted spectrum of disorders, characterized by activity-related pain, compromised function, and propensity for an extended absence from sport and the workplace. The pathophysiology of tendinopathy continues to evolve. For decades, it has been related primarily to repetitive overload trauma but more recently, the onset of tendinopathy has been attributed to the tissue's failed attempt to heal after subclinical inflammatory and immune challenges (failed healing model). Conventional tendinopathy management produces only short-term symptomatic relief and often results in incomplete repair or healing leading to compromised tendon function. For this reason, there has been increased effort to develop therapeutics to overcome the tissue's failed healing response by targeting the cellular metaplasia and pro-inflammatory extra-cellular environment. On this basis, stem cell-based therapies have been proposed as an alternative therapeutic approach designed to modify the course of the various tendon pathologies. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells often referred to as "medicinal signaling cells" due to their immunomodulatory and anti-inflammatory properties that can produce a pro-regenerative microenvironment in pathological tendons. However, the adoption of MSCs into clinical practice has been limited by FDA regulations and perceived risk of adverse events upon infusion in vivo. The introduction of cell-free approaches, such as the extracellular vesicles of MSCs, has encouraged new perspectives for the treatment of tendinopathies, showing promising short-term results. In this article, we review the most recent advances in MSC-based and MSC-derived therapies for tendinopathies. Preclinical and clinical studies are included with comment on future directions of this rapidly developing therapeutic modality, including the importance of understanding tissue loading and its relationship to any treatment regimen.

18.
J Am Acad Orthop Surg ; 31(6): e318-e326, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36622936

RESUMO

PURPOSE: The purpose of this review was to assess all available studies that analyzed the types of questions in individual sections of the Orthopaedic In-Training Examination, which may be used as a reference for residents studying for their examination. METHODS: Following the Providing Innovative Service Models and Assessment extension for Scoping Reviews guidelines, a systematic review was conducted on studies that report on sections or question categories of the Orthopaedic In-Training Examination using PubMed, MEDLINE, and Web of Science databases. Two reviewers and an arbitrator reviewed and extracted relevant data from 20 included studies which made up the systematic review. RESULTS: All 20 studies in the review reported the mean number of questions per section, with the highest coming from musculoskeletal trauma (18.9% to 19.0%). 18 studies reported the Buckwalter taxonomic classification; 42.0% of questions were T1, 18.2% were T2, and 39.5% were T3 with a wide range from section to section. Primary sources were nearly three times more likely to be cited when compared with textbook sources. There were 12 journals that were commonly cited with the most being the Journal of Bone and Joint Surgery: American Volume (17/18). DISCUSSION: This study accurately portrays the characteristics of each section of the Orthopaedic In-Training Examination over the past 10 years. These data suggest that orthopaedic residents may be inclined to focus on musculoskeletal trauma, topics related to clinical management, and primary journal sources for studying. In addition, residency programs may choose to focus on higher yield sources or material to prepare their residents for the examination.


Assuntos
Internato e Residência , Ortopedia , Humanos , Estados Unidos , Ortopedia/educação , Educação de Pós-Graduação em Medicina , Avaliação Educacional
19.
PLoS One ; 18(1): e0280616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662701

RESUMO

The meniscus is a fibrocartilaginous tissue that plays an essential role in load transmission, lubrication, and stabilization of the knee. Loss of meniscus function, through degeneration or trauma, can lead to osteoarthritis in the underlying articular cartilage. To perform its crucial function, the meniscus extracellular matrix has a particular organization, including collagen fiber bundles running circumferentially, allowing the tissue to withstand tensile hoop stresses developed during axial loading. Given its critical role in preserving the health of the knee, better understanding structure-function relations of the biomechanical properties of the meniscus is critical. The main objective of this study was to measure the compressive modulus of porcine meniscus using Atomic Force Microscopy (AFM); the effects of three key factors were investigated: direction (axial, circumferential), compartment (medial, lateral) and region (inner, outer). Porcine menisci were prepared in 8 groups (= 2 directions x 2 compartments x 2 regions) with n = 9 per group. A custom AFM was used to obtain force-indentation curves, which were then curve-fit with the Hertz model to determine the tissue's compressive modulus. The compressive modulus ranged from 0.75 to 4.00 MPa across the 8 groups, with an averaged value of 2.04±0.86MPa. Only direction had a significant effect on meniscus compressive modulus (circumferential > axial, p = 0.024), in agreement with earlier studies demonstrating that mechanical properties in the tissue are anisotropic. This behavior is likely the result of the particular collagen fiber arrangement in the tissue and plays a key role in load transmission capability. This study provides important information on the micromechanical properties of the meniscus, which is crucial for understanding tissue pathophysiology, as well as for developing novel treatments for tissue repair.


Assuntos
Meniscos Tibiais , Menisco , Animais , Suínos , Meniscos Tibiais/fisiologia , Anisotropia , Microscopia de Força Atômica , Colágeno , Fenômenos Biomecânicos/fisiologia
20.
J Orthop Res ; 41(7): 1607-1617, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36448086

RESUMO

Damage to the meniscus has been associated with excessive shear loads. Aimed at elucidating meniscus pathophysiology, previous studies have investigated the shear properties of the meniscus fibrocartilaginous core. However, the meniscus is structurally inhomogeneous, with an external cartilaginous envelope (tibial and femoral surface layers) wrapping the tissue core. To date, little is known about the shear behavior of the surface layers. The objective of this study was to measure the dynamic shear properties of the surface layers and derive empirical relations with their composition. Specimens were harvested from tibial and femoral surface layers and core of porcine menisci (medial and lateral, n = 10 each). Frequency sweep tests yielded complex shear modulus (G*) and phase shifts (δ). Mechanical behavior of regions was described by a generalized Maxwell model. Correlations between shear moduli with water and glycosaminoglycans content of the tissue regions were investigated. The femoral surface had the lowest shear modulus, when compared to core and tibial regions. A 3-relaxation times Maxwell model satisfactorily interpreted the shear behavior of all tissue regions. Inhomogeneous tissue composition was also observed, with water content in the surface layers being higher when compared with tissue core. Water content negatively correlated with shear properties in all regions. The lower measured shear properties in the femoral layer may explain the higher prevalence of meniscal tears on the superior surface of the tissue. The heterogenous behavior of the tissue in shear provides insight into meniscus pathology and has important implications for efforts to tissue engineer replacement tissues.


Assuntos
Meniscos Tibiais , Animais , Glicosaminoglicanos , Meniscos Tibiais/fisiologia , Menisco , Suínos , Tíbia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA