Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurotrauma ; 13(3): 149-62, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8965324

RESUMO

Laser-Doppler flowmetry (LDF) was used to record subcortical cerebral blood flow in hippocampus and striatum immediately following parasaggital fluid percussion brain injuries of mild to moderate severity (2.58 +/- 0.09 atm, 10-11 msec duration) in spontaneously breathing anesthetized rats. At 5 min postinjury, mean blood flow decreased bilaterally by 20-30% in both brain structures, and remained significantly reduced during the remainder of the 60 min postinjury recording interval. Blood flow did not change in the sham-injured rats. Subsequent beam-walk, beam-balance, and rope-hang assessments revealed significant neurological impairments in the injured rats but not in the sham controls. The magnitude of the blood flow changes and the severity of the ensuing neurological impairment were significantly correlated. Histopathological assessments revealed hemorrhagic contusions within ipsilateral cortical regions, occasional neuronal necrosis within underlying thalamus and CA3 and CA4 sectors of the hippocampus, and neuronal cell loss in the hilus of the dentate gyrus. In a second series of experiments, radiolabeled microspheres were used to validate the LDF blood flow measurements. The microsphere measurements revealed that the preinjury baseline and postinjury right hippocampal blood flow changes were not significantly altered by the intrahippocampal presence of an LDF probe, verifying that the LDF probe was not by itself an unacceptably disruptive influence on local cerebrovascular reactivity. Moreover, when right hippocampal blood flow was simultaneously evaluated in injured rats by both techniques, the relative blood flow changes were significantly correlated. These results indicate that laser-Doppler flowmetry provides a potentially useful means to appreciate acute regional cerebrovascular changes relative to other measures of outcome after brain trauma.


Assuntos
Lesões Encefálicas/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea/fisiologia , Lesões Encefálicas/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Fluxometria por Laser-Doppler , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA