Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACC Clin Electrophysiol ; 10(4): 637-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38276927

RESUMO

BACKGROUND: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. OBJECTIVES: The purpose of this study was to evaluate electroanatomic voltage-mapping (EAVM) with different-size electrodes for identifying VM, validated against high-resolution ex-vivo cardiac magnetic resonance (HR-LGE-CMR). METHODS: A total of 9 swine with early-reperfusion myocardial infarction were mapped with the QDOT microcatheter. HR-LGE-CMR (0.3-mm slices) were merged with EAVM. At each EAVM point, the underlying VM in multisize transmural cylinders and spheres was quantified from ex vivo CMR and related to unipolar and bipolar voltages recorded from conventional and microelectrodes. RESULTS: In each swine, 220 mapping points (Q1, Q3: 216, 260 mapping points) were collected. Infarcts were heterogeneous and nontransmural. Unipolar and bipolar voltage increased with VM volumes from >175 mm3 up to >525 mm3 (equivalent to a 5-mm radius cylinder with height >6.69 mm). VM volumes in subendocardial cylinders with 1- or 3-mm depth correlated poorly with all voltages. Unipolar voltages recorded with conventional and microelectrodes were similar (difference 0.17 ± 2.66 mV) and correlated best to VM within a sphere of radius 10 and 8 mm, respectively. Distance-weighting did not improve the correlation. CONCLUSIONS: Voltage increases with transmural volume of VM but correlates poorly with small amounts of VM, which limits EAVM in defining heterogeneous scar. Microelectrodes cannot distinguish thin from thick areas of subendocardial VM. The field-of-view for unipolar recordings for microelectrodes and conventional electrodes appears to be 8 to 10 mm, respectively, and unexpectedly similar.


Assuntos
Infarto do Miocárdio , Animais , Suínos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Gadolínio , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Técnicas Eletrofisiológicas Cardíacas/métodos , Microeletrodos , Eletrodos , Miocárdio/patologia , Meios de Contraste
2.
JACC Clin Electrophysiol ; 9(7 Pt 1): 965-975, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36752463

RESUMO

BACKGROUND: Patients with dilated cardiomyopathy (DCM) who are undergoing catheter ablation of ventricular arrhythmias (VAs) are at risk of rapidly progressive heart failure (HF). Endocardial voltages decrease with loss of viable myocardium. Global left ventricular (LV) voltage as a surrogate for the amount of remaining viable myocardium may predict prognosis. OBJECTIVES: This study evaluated whether the newly proposed parameter volume-weighted (vw) unipolar voltage (UV) can predict HF-related adverse outcomes (HFOs), including death, heart transplantation, or ventricular assist device implantation, in DCM. METHODS: In consecutive patients with DCM referred for VA ablation, vwUV was calculated by mathematically integrating UV over the left ventricle, divided by the endocardial LV surface area and wall thickness. Patients were followed for HFOs. RESULTS: A total of 103 patients (57 ± 14 years of age; left ventricular ejection fraction [LVEF], 39% ± 13%) were included. Median vwUV was 9.75 (IQR: 7.27-12.29). During a median follow-up of 24 months (IQR: 8-47 months), 25 patients (24%) died, and 16 had HFOs 7 months (IQR: 1-18 months) after ablation. Patients with HFOs had significantly lower LVEF (29% ± 10% vs 41% ± 12%), vw bipolar voltage (BV) (3.00 [IQR: 2.47-3.53] vs 5.00 [IQR: 4.12-5.73]), and vwUV (5.94 [IQR: 5.28-6.55] vs 10.37 [IQR: 8.82-12.81]; all P < 0.001), than patients without HFOs. In Cox regression analysis and goodness-of-fit tests, vwUV was the strongest and independent predictor for HFOs (HR: 3.68; CI: 2.09-6.45; likelihood ratio chi-square, 33.05; P < 0.001). CONCLUSIONS: The novel parameter vwUV, as a surrogate for the amount of viable myocardium, identifies patients with DCM with VA who are at high risk for HF progression and mortality.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Taquicardia Ventricular , Humanos , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico por imagem , Volume Sistólico , Taquicardia Ventricular/cirurgia , Função Ventricular Esquerda , Insuficiência Cardíaca/complicações , Arritmias Cardíacas
3.
JACC Clin Electrophysiol ; 7(2): 197-205, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33602400

RESUMO

OBJECTIVES: This study sought to assess the relative effect of catheter, tissue, and catheter-tissue parameters, on the ability to determine the amount of viable myocardium in vivo. BACKGROUND: Although multiple variables impact bipolar voltages (BVs), electrode size, interelectrode spacing, and directional dependency are of particular interest with the development of catheters incorporating mini and microelectrodes. METHODS: Nine swine with early reperfusion myocardial infarctions were mapped using the QDot catheter and then remapped using a Pentaray catheter. All QDot points were matched with Pentaray points within 5 mm. The swine were sacrificed, and mapping data projected onto the heart. Transmural biopsies corresponding to mapping points were obtained, allowing a comparison of electrograms recorded by mini, micro-, and conventional electrodes with histology. RESULTS: The conventional BV of 2,322 QDot points was 1.9 ± 1.3 mV. The largest of the 3 microelectrode BVs (BVµMax) average 4.8 ± 3.1 mV. The difference between the largest (BVµMax) and smallest (BVµMin) at a given location was 53.7 ± 18.1%. The relationships between both BVµMax and BVµMin and between the conventional BV and BVµMax were positively related but with a significant spread in data, which was more pronounced for the latter. Pentaray points positively related to the BVµMax with poor fit. On histology, increasing viable myocardium increased voltage, but both the slope coefficient and fit were best for BVµMax. CONCLUSIONS: Using histology, we could demonstrate that BVµMax is superior to identify viable myocardium compared with BVC and BV using the Pentaray catheter. The ability to simultaneously record 3 BVµs with different orientations, for the same beat, with controllable contact and selecting BVµMax for local BV may partially compensate for wave front direction.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Coração , Animais , Eletrofisiologia Cardíaca , Microeletrodos , Miocárdio , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA