Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 229: 82-93, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917961

RESUMO

DiOlistic labelling is a robust, unbiased ballistic method that utilises lipophilic dyes to morphologically label neurons. While its efficacy on freshly dissected tissue specimens is well-documented, applying DiOlistic labelling to stored, fixed brain tissue and its use in polychromatic multi-marker studies poses significant technical challenges. Here, we present an improved, step-by-step protocol for DiOlistic labelling of dendrites and dendritic spines in fixed mouse tissue. Our protocol encompasses the five key stages: Tissue Preparation, Dye Bullet Preparation, DiOlistic Labelling, Confocal Imaging, and Image Analysis. This method ensures reliable and consistent labelling of dendritic spines in fixed mouse tissue, combined with increased throughput of samples and multi-parameter staining and visualisation of tissue, thereby offering a valuable approach for neuroscientific research.

2.
Brain Behav Immun ; 118: 355-363, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38485063

RESUMO

Complement is dysregulated in the brain in Alzheimer's Disease and in mouse models of Alzheimer's disease. Each of the complement derived effectors, opsonins, anaphylatoxins and membrane attack complex (MAC), have been implicated as drivers of disease but their relative contributions remain unclarified. Here we have focussed on the MAC, a lytic and pro-inflammatory effector, in the AppNL-G-F mouse amyloidopathy model. To test the role of MAC, we back-crossed to generate AppNL-G-F mice deficient in C7, an essential MAC component. C7 deficiency ablated MAC formation, reduced synapse loss and amyloid load and improved cognition compared to complement-sufficient AppNL-G-F mice at 8-10 months age. Adding back C7 caused increased MAC formation in brain and an acute loss of synapses in C7-deficient AppNL-G-F mice. To explore whether C7 was a viable therapeutic target, a C7-blocking monoclonal antibody was administered systemically for one month in AppNL-G-F mice aged 8-9 months. Treatment reduced brain MAC and amyloid deposition, increased synapse density and improved cognitive performance compared to isotype control-treated AppNL-G-F mice. The findings implicate MAC as a driver of pathology and highlight the potential for complement inhibition at the level of MAC as a therapy in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Ativação do Complemento , Modelos Animais de Doenças
3.
Front Neuroinform ; 17: 1211188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637472

RESUMO

Quantification of microglial activation through morphometric analysis has long been a staple of the neuroimmunologist's toolkit. Microglial morphological phenomics can be conducted through either manual classification or constructing a digital skeleton and extracting morphometric data from it. Multiple open-access and paid software packages are available to generate these skeletons via semi-automated and/or fully automated methods with varying degrees of accuracy. Despite advancements in methods to generate morphometrics (quantitative measures of cellular morphology), there has been limited development of tools to analyze the datasets they generate, in particular those containing parameters from tens of thousands of cells analyzed by fully automated pipelines. In this review, we compare and critique the approaches using cluster analysis and machine learning driven predictive algorithms that have been developed to tackle these large datasets, and propose improvements for these methods. In particular, we highlight the need for a commitment to open science from groups developing these classifiers. Furthermore, we call attention to a need for communication between those with a strong software engineering/computer science background and neuroimmunologists to produce effective analytical tools with simplified operability if we are to see their wide-spread adoption by the glia biology community.

4.
Methods Mol Biol ; 2708: 33-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558957

RESUMO

Gene gun DiOlistic labelling enables the detailed visualization of retinal ganglion cells (RGCs) dendritic structure. Since the level of labelling is independent of cellular health, it is useful for the characterization of neuronal structure in degenerating neurons where expressed reporters may be inadequate. The method uses compressed helium gas to fire tungsten or gold microparticles coated in carbocyanine dyes (DiD, DiI, DiO) into flat mounted retinas. Here we describe the methods to optimize labelling and ensure a high yield of adequately labelled cells, with a focus on retinal ganglion cells.


Assuntos
Retina , Células Ganglionares da Retina , Células Ganglionares da Retina/fisiologia , Carbocianinas , Corantes
5.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902113

RESUMO

Aging and metabolic syndrome are associated with neurodegenerative pathologies including Alzheimer's disease (AD) and there is growing interest in the prophylactic potential of probiotic bacteria in this area. In this study, we assessed the neuroprotective potential of the Lab4P probiotic consortium in both age and metabolically challenged 3xTg-AD mice and in human SH-SY5Y cell culture models of neurodegeneration. In mice, supplementation prevented disease-associated deteriorations in novel object recognition, hippocampal neurone spine density (particularly thin spines) and mRNA expression in hippocampal tissue implying an anti-inflammatory impact of the probiotic, more notably in the metabolically challenged setting. In differentiated human SH-SY5Y neurones challenged with ß-Amyloid, probiotic metabolites elicited a neuroprotective capability. Taken together, the results highlight Lab4P as a potential neuroprotective agent and provide compelling support for additional studies in animal models of other neurodegenerative conditions and human studies.


Assuntos
Doença de Alzheimer , Neuroblastoma , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Neuroblastoma/patologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Cognição , Modelos Animais de Doenças
6.
Acta Neuropathol Commun ; 10(1): 99, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794654

RESUMO

Complement is involved in developmental synaptic pruning and pathological synapse loss in Alzheimer's disease. It is posited that C1 binding initiates complement activation on synapses; C3 fragments then tag them for microglial phagocytosis. However, the precise mechanisms of complement-mediated synaptic loss remain unclear, and the role of the lytic membrane attack complex (MAC) is unexplored. We here address several knowledge gaps: (i) is complement activated through to MAC at the synapse? (ii) does MAC contribute to synaptic loss? (iii) can MAC inhibition prevent synaptic loss? Novel methods were developed and optimised to quantify C1q, C3 fragments and MAC in total and regional brain homogenates and synaptoneurosomes from WT and AppNL-G-F Alzheimer's disease model mouse brains at 3, 6, 9 and 12 months of age. The impact on synapse loss of systemic treatment with a MAC blocking antibody and gene knockout of a MAC component was assessed in Alzheimer's disease model mice. A significant increase in C1q, C3 fragments and MAC was observed in AppNL-G-F mice compared to controls, increasing with age and severity. Administration of anti-C7 antibody to AppNL-G-F mice modulated synapse loss, reflected by the density of dendritic spines in the vicinity of plaques. Constitutive knockout of C6 significantly reduced synapse loss in 3xTg-AD mice. We demonstrate that complement dysregulation occurs in Alzheimer's disease mice involving the activation (C1q; C3b/iC3b) and terminal (MAC) pathways in brain areas associated with pathology. Inhibition or ablation of MAC formation reduced synapse loss in two Alzheimer's disease mouse models, demonstrating that MAC formation is a driver of synapse loss. We suggest that MAC directly damages synapses, analogous to neuromuscular junction destruction in myasthenia gravis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Animais , Ativação do Complemento , Complemento C1q/genética , Complemento C1q/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Camundongos , Placa Amiloide/patologia , Sinapses/patologia
7.
Front Neurosci ; 16: 843105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685773

RESUMO

Brain degenerative disorders such as Alzheimer's disease (AD) can be exacerbated by aberrant metabolism. Supplementation with probiotic bacteria is emerging as a promising preventative strategy for both neurodegeneration and metabolic syndrome. In this study, we assess the impact of the Lab4b probiotic consortium on (i) cognitive and pathological markers of AD progression and (ii) metabolic status in 3xTg-AD mice subjected to metabolic challenge with a high fat diet. The group receiving the probiotic performed better in the novel object recognition test and displayed higher hippocampal neuronal spine density than the control group at the end of the 12 weeks intervention period. These changes were accompanied by differences in localised (brain) and systemic anti-inflammatory responses that favoured the Probiotic group together with the prevention of diet induced weight gain and hypercholesterolaemia and the modulation of liver function. Compositional differences between the faecal microbiotas of the study groups included a lower Firmicutes:Bacteroidetes ratio and less numbers of viable yeast in the Probiotic group compared to the Control. The results illustrate the potential of the Lab4b probiotic as a neuroprotective agent and encourage further studies with human participants.

8.
Acta Neuropathol Commun ; 8(1): 216, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287900

RESUMO

Neuronal dendritic and synaptic pruning are early features of neurodegenerative diseases, including Alzheimer's disease. In addition to brain pathology, amyloid plaque deposition, microglial activation, and cell loss occur in the retinas of human patients and animal models of Alzheimer's disease. Retinal ganglion cells, the output neurons of the retina, are vulnerable to damage in neurodegenerative diseases and are a potential opportunity for non-invasive clinical diagnosis and monitoring of Alzheimer's progression. However, the extent of retinal involvement in Alzheimer's models and how well this reflects brain pathology is unclear. Here we have quantified changes in retinal ganglion cells dendritic structure and hippocampal dendritic spines in three well-studied Alzheimer's mouse models, Tg2576, 3xTg-AD and APPNL-G-F. Dendritic complexity of DiOlistically labelled retinal ganglion cells from retinal explants was reduced in all three models in an age-, gender-, and receptive field-dependent manner. DiOlistically labelled hippocampal slices showed spine loss in CA1 apical dendrites in all three Alzheimer's models, mirroring the early stages of neurodegeneration as seen in the retina. Morphological classification showed that loss of thin spines predominated in all. The demonstration that retinal ganglion cells dendritic field reduction occurs in parallel with hippocampal dendritic spine loss in all three Alzheimer's models provide compelling support for the use of retinal neurodegeneration. As retinal dendritic changes are within the optical range of current clinical imaging systems (for example optical coherence tomography), our study makes a case for imaging the retina as a non-invasive way to diagnose disease and monitor progression in Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Espinhas Dendríticas/patologia , Hipocampo/patologia , Células Ganglionares da Retina/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
9.
Brain Commun ; 2(2): fcaa101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33094281

RESUMO

A healthy mitochondrial network is essential for the maintenance of neuronal synaptic integrity. Mitochondrial and metabolic dysfunction contributes to the pathogenesis of many neurodegenerative diseases including dementia. OPA1 is the master regulator of mitochondrial fusion and fission and is likely to play an important role during neurodegenerative events. To explore this, we quantified hippocampal dendritic and synaptic integrity and the learning and memory performance of aged Opa1 haploinsufficient mice carrying the Opa1Q285X mutation (B6; C3-Opa1Q285STOP ; Opa1+/- ). We demonstrate that heterozygous loss of Opa1 results in premature age-related loss of spines in hippocampal pyramidal CA1 neurons and a reduction in synaptic density in the hippocampus. This loss is associated with subtle memory deficits in both spatial novelty and object recognition. We hypothesize that metabolic failure to maintain normal neuronal activity at the level of a single spine leads to premature age-related memory deficits. These results highlight the importance of mitochondrial homeostasis for maintenance of neuronal function during ageing.

10.
Ann Neurol ; 84(6): 829-842, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362156

RESUMO

OBJECTIVE: Cortical gray matter (GM) pathology, involving demyelination and neurodegeneration, associated with meningeal inflammation, could be important in determining disability progression in multiple sclerosis (MS). However, we need to know more about how cortical demyelination, neurodegeneration, and meningeal inflammation contribute to pathology at early stages of MS to better predict long-term outcome. METHODS: Tissue blocks from short disease duration MS (n = 12, median disease duration = 2 years), progressive MS (n = 21, disease duration = 25 years), non-diseased controls (n = 11), and other neurological inflammatory disease controls (n = 6) were quantitatively analyzed by immunohistochemistry, immunofluorescence, and in situ hybridization. RESULTS: Cortical GM demyelination was extensive in some cases of acute MS (range = 1-48% of total cortical GM), and subpial lesions were the most common type (62%). The numbers of activated (CD68+ ) microglia/macrophages were increased in cases with subpial lesions, and the density of neurons was significantly reduced in acute MS normal appearing and lesion GM, compared to controls (p < 0.005). Significant meningeal inflammation and lymphoid-like structures were seen in 4 of 12 acute MS cases. The extent of meningeal inflammation correlated with microglial/macrophage activation (p < 0.05), but not the area of cortical demyelination, reflecting the finding that lymphoid-like structures were seen adjacent to GM lesions as well as areas of partially demyelinated/remyelinated, cortical GM. INTERPRETATION: Our findings demonstrate that cortical demyelination, neuronal loss, and meningeal inflammation are notable pathological hallmarks of acute MS and support the need to identify early biomarkers of this pathology to better predict outcome. Ann Neurol 2018;84:829-842.


Assuntos
Córtex Cerebral/patologia , Inflamação/complicações , Meninges/patologia , Esclerose Múltipla/complicações , Bainha de Mielina/patologia , Adulto , Idoso , Antígenos CD/metabolismo , Córtex Cerebral/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Feminino , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Meninges/metabolismo , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Bainha de Mielina/metabolismo , Fatores de Transcrição/metabolismo , Adulto Jovem
11.
Brain Pathol ; 28(4): 507-520, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28707765

RESUMO

The complement pathway has potential contributions to both white (WM) and grey matter (GM) pathology in Multiple Sclerosis (MS). A quantitative assessment of complement involvement is lacking. Here we describe the use of Tissue MicroArray (TMA) methodology in conjunction with immunohistochemistry to investigate the localization of complement pathway proteins in progressive MS cortical GM and subcortical WM. Antibodies targeting complement proteins C1q, C3b, regulatory proteins C1 inhibitor (C1INH, complement receptor 1 (CR1), clusterin, factor H (FH) and the C5a anaphylatoxin receptor (C5aR) were utilised alongside standard markers of tissue pathology. All stained slides were digitised for quantitative analysis. We found that numbers of cells immunolabelled for HLA-DR, GFAP, C5aR, C1q and C3b were increased in WM lesions (WML) and GM lesions (GML) compared to normal appearing WM (NAWM) and GM (NAGM), respectively. The complement regulators C1INH, CR1, FH and clusterin were more abundant in WM lesions, while the number of C1q+ neurons were increased and the number of C1INH+, clusterin+, FH+ and CR1+ neurons decreased in GM lesions. The number of complement component positive cells (C1q, C3b) correlated with complement regulator expression in WM, but there was no statistical association between complement activation and regulator expression in the GM. We conclude that TMA methodology and quantitative analysis provides evidence of complement dysregulation in MS GML, including an association of the numerical density of C1q+ cells with tissue lesions. Our work confirms that complement activation and dysregulation occur in all cases of progressive MS and suggest that complement may provide potential biomarkers of the disease.


Assuntos
Encéfalo/imunologia , Ativação do Complemento , Esclerose Múltipla/imunologia , Análise Serial de Tecidos/métodos , Adulto , Idoso , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/patologia , Feminino , Substância Cinzenta/imunologia , Substância Cinzenta/patologia , Humanos , Imuno-Histoquímica , Rim/imunologia , Rim/patologia , Masculino , Microglia/imunologia , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Neurônios/imunologia , Neurônios/patologia , Substância Branca/imunologia , Substância Branca/patologia
12.
Placenta ; 58: 25-32, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28962692

RESUMO

INTRODUCTION: Nucleotide-binding oligomerization domain (NOD)-like receptors or NOD-like receptors (NLRs) have been implicated in several disease pathologies associated with inflammation. Since local and systemic inflammation is a hallmark of both term and preterm labour, a role for NLRs at the materno-fetal interface has been postulated. METHODS: Gene expression and immunolocalisation of NLR family members in human placenta, choriodecidua, and amnion were examined. Tissue explants were used to examine the response to activators of NOD1 (Tri-DAP), NOD2 (MDP) and NLRP3 (nigericin). Cell/tissue-free supernatants were examined for the production of interleukin (IL)-1ß, IL-6, IL-8 and IL-10 using specific ELISAs. RESULTS: Expression of transcripts for NOD1, NOD2, NLRP3, NLRC4, NLRX1, NLRP1 and NAIP and protein expression of NOD1, NOD2 and NLRP3 were a broad feature of all term gestation-associated tissues. Production of cytokines was increased significantly in response to all ligands in placenta and choriodecidua, except for MDP-induced IL-10. Similarly, there was a significant in the amnion except for MDP induced IL-1ß and IL-10 response to either agonist. IL-1ß production was dependent on caspase-1 regardless of agonist used or tissue examined. DISCUSSION: Term human gestation-associated tissues express functional NLRs which likely play a role in both sterile and pathogen-driven inflammatory responses at the materno-fetal interface.


Assuntos
Âmnio/metabolismo , Córion/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Placenta/metabolismo , Âmnio/efeitos dos fármacos , Córion/efeitos dos fármacos , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/farmacologia , Feminino , Humanos , Interleucinas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nigericina/farmacologia , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Oligopeptídeos/farmacologia , Fenóis/farmacologia , Placenta/efeitos dos fármacos , Gravidez , Propionatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA