Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Am Chem Soc ; 146(31): 21196-21202, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051845

RESUMO

A heteroleptic [Pd2L2L'2]4+ coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched OFF and ON at will.

2.
Nat Chem ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054380

RESUMO

The photophysical processes of singlet fission and triplet fusion have numerous emerging applications. They involve the separation of a photo-generated singlet exciton into two dark triplet excitons and the fusion of two dark triplet excitons into an emissive singlet exciton, respectively. The role of the excimer state and the nature of the triplet-pair state in these processes have been a matter of contention. Here we analyse the room temperature time-resolved emission of a neat liquid singlet fission chromophore and show that it exhibits three spectral components: two that correspond to the bright singlet and excimer states and a third component that becomes more prominent during triplet fusion. This spectrum is enhanced by magnetic fields, confirming its origins in the recombination of weakly coupled triplet pairs. It is thus attributed to a strongly coupled triplet pair state. These observations unite the view that there is an emissive intermediate in singlet fission and triplet fusion, distinct from the broad, unstructured excimer emission.

3.
Chemistry ; 30(25): e202400544, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38407499

RESUMO

Light can be used to design stimuli-responsive systems. We induce transient changes in the assembly of a low molecular weight gelator solution using a merocyanine photoacid. Through our approach, reversible viscosity changes can be achieved via irradiation, delivering systems where flow can be controlled non-invasively on demand.

4.
Chemistry ; 29(65): e202302069, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37578089

RESUMO

Azoheteroarenes are emerging as powerful alternatives to azobenzene molecular photoswitches. In this study, water-soluble arylazoisoxazole photoswitches are introduced. UV/vis and NMR spectroscopy revealed moderate to very good photostationary states and reversible photoisomerization between the E- and Z-isomers over multiple cycles with minimal photobleaching. Several arylazoisoxazoles form host-guest complexes with ß- and γ-cyclodextrin with significant differences in binding constants for each photoisomer as shown by isothermal titration calorimetry and NMR experiments, indicating their potential for photoresponsive host-guest chemistry in water. One carboxylic acid functionalized arylazoisoxazole can act as a hydrogelator, allowing gel properties to be manipulated reversibly with light. The hydrogel was characterized by rheological experiments, atom force microscopy and transmission electron microscopy. These results demonstrate that arylazoisoxazoles can find applications as molecular photoswitches in aqueous media.

5.
J Org Chem ; 88(17): 12208-12215, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607400

RESUMO

Tetrahydrothiophenocucurbit[5 and 6]uril has been synthesized from tetrathiophenoglycoluril diether, providing thioether functionality at the exterior equatorial position of the cucurbituril cage. This functionality has been investigated for chemical modification through sulfoxide formation and subsequent Pummerer rearrangement to the acetoxy derivative of the tetrahydrothiophenocucurbit[5]uril. Nanoparticles of Au and Ag were prepared in the presence of tetrahydrothiophenocucurbit[6]uril, which curiously led to the formation of nanoparticle chains, growing in length over days to weeks.

6.
Angew Chem Int Ed Engl ; 62(20): e202301678, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914561

RESUMO

Polydopamine (PDA) is a synthetic model for melanin and has a wide range of opto-electronic properties that underpin its utility in applied and biological settings, from broadband light absorbance to possessing stable free radical species. Here, we show that PDA free radicals are photo-responsive under visible light irradiation, enabling PDA to serve as a photo-redox catalyst. Steady-state and transient electron spin resonance spectroscopy reveals a reversible amplification in semiquinone radical population within PDA under visible light. This photo-response modifies the redox potential of PDA and supports sensitisation of exogenous species via photoinduced electron transfer (PET). We demonstrate the utility of this discovery by employing PDA nanoparticles to photosensitise a common diaryliodonium photoinitiator and initiate free-radical polymerisation (FRP) of vinylic monomers. In situ 1 H nuclear magnetic resonance spectroscopy reveals an interplay between PDA-driven photosensitising and radical quenching during FRP under blue, green, and red light. This work provides crucial insights into the photoactive free radical properties of melanin-like materials and reveals a promising new application for polydopamine as a photosensitiser.

7.
J Am Chem Soc ; 145(4): 2088-2092, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688871

RESUMO

Here we regulate the formation of dissipative assemblies built from DNA using a merocyanine photoacid that responds to visible light. The operation of our system and the relative distribution of species within it are controlled by irradiation time, initial pH value, and the concentration of a small-molecule binder that inhibits the reaction cycle. This approach is modular, does not require DNA modification, and can be used for several DNA sequences and lengths. Our system design allows for waste-free control of dissipative DNA nanotechnology, toward the generation of nonequilibrium, life-like nanodevices.


Assuntos
Luz , Nanotecnologia , Motivos de Nucleotídeos , DNA/química , Sequência de Bases
8.
J Am Chem Soc ; 144(30): 13436-13440, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35919987

RESUMO

In their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our groups (J. Am. Chem. Soc. 2021, 143, 20884-20890; DOI: 10.1021/jacs.1c09455) and another (J. Am. Chem. Soc. 2022, 144, 1380-1388; DOI: 10.1021/jacs.1c11754), Huang and Granick discuss the diffusion NMR measurements of molecules during a copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. Here we respond to these comments and maintain that no diffusion enhancement was observed for any species during the reaction. We show that the relaxation agent does not interfere with the CuAAC reaction kinetics nor the diffusion of the molecules involved. Similarly, the gradient pulse length and diffusion time do not affect the diffusion coefficients. Peak overlap was completely removed in our study with the use of hydrazine as the reducing agent. The steady-state assumption does not hold for these diffusion measurements that take several minutes, which is the reason monotonic gradient orders are not suitable. Finally, we discuss the other reactions where similar changes in diffusion have been claimed. Our conclusions are fully supported by the results represented in our original JACS Article and the corresponding Supporting Information.


Assuntos
Alcinos , Azidas , Alcinos/química , Azidas/química , Catálise , Cobre/química , Reação de Cicloadição
9.
Angew Chem Int Ed Engl ; 61(38): e202205701, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35972841

RESUMO

A photoswitchable ligand based on azobenzene is self-assembled with palladium(II) ions to form a [Pd2 (E-L)4 ]4+ cage. Irradiation with 470 nm light results in the near-quantitative switching to a monomeric species [Pd(Z-L)2 ]2+ , which can be reversed by irradiation with 405 nm light, or heat. The photoswitching selectivity towards the metastable isomer is significantly improved upon self-assembly, and the thermal half-life is extended from 40 days to 850 days, a promising approach for tuning photoswitching properties.

10.
ACS Macro Lett ; 11(2): 166-172, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574764

RESUMO

Online, high-throughput molecular weight analysis of polymerizations is rare, with most studies relying on tedious sampling techniques and batchwise postanalysis. The ability to track both monomer conversion and molecular weight evolution in real time could underpin precision polymer development and facilitate study of rapid polymerization reactions. Here, we use a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument. As a model system, we used a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The data allow diffusion coefficients and intensities to be calculated every 14 s from which the polymer size and monomer conversion can be extracted. Key to this approach is (1) the use of shuffled gradient amplitudes in the diffusion NMR experiment to access reactions of any rate, (2) the addition of a relaxation agent to increase achievable time resolution and, (3) a sliding correction that accounts for viscosity changes during polymerization. Diffusion NMR offers a uniquely simple, translatable handle for online monitoring of polymerization reactions.


Assuntos
Polímeros , Cinética , Peso Molecular , Polimerização , Polímeros/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA