Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Oncogene ; 40(5): 997-1011, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323970

RESUMO

Estrogen receptor alpha gene (ESR1) mutations occur frequently in ER-positive metastatic breast cancer, and confer clinical resistance to aromatase inhibitors. Expression of the ESR1 Y537S mutation induced an epithelial-mesenchymal transition (EMT) with cells exhibiting enhanced migration and invasion potential in vitro. When small subpopulations of Y537S ESR1 mutant cells were injected along with WT parental cells, tumor growth was enhanced with mutant cells becoming the predominant population in distant metastases. Y537S mutant primary xenograft tumors were resistant to the antiestrogen tamoxifen (Tam) as well as to estradiol (E2) withdrawal. Y537S ESR1 mutant primary tumors metastasized efficiently in the absence of E2; however, Tam treatment significantly inhibited metastasis to distant sites. We identified a nine-gene expression signature, which predicted clinical outcomes of ER-positive breast cancer patients, as well as breast cancer metastasis to the lung. Androgen receptor (AR) protein levels were increased in mutant models, and the AR agonist dihydrotestosterone significantly inhibited estrogen-regulated gene expression, EMT, and distant metastasis in vivo, suggesting that AR may play a role in distant metastatic progression of ESR1 mutant tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Receptores Androgênicos/genética , Tamoxifeno/farmacologia , Animais , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Di-Hidrotestosterona/farmacologia , Estradiol/metabolismo , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação/genética , Metástase Neoplásica , Receptores Androgênicos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Br J Cancer ; 124(1): 191-206, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257837

RESUMO

BACKGROUND: Oestrogen Receptor 1 (ESR1) mutations are frequently acquired in oestrogen receptor (ER)-positive metastatic breast cancer (MBC) patients who were treated with aromatase inhibitors (AI) in the metastatic setting. Acquired ESR1 mutations are associated with poor prognosis and there is a lack of effective therapies that selectively target these cancers. METHODS: We performed a proteomic kinome analysis in ESR1 Y537S mutant cells to identify hyperactivated kinases in ESR1 mutant cells. We validated Recepteur d'Origine Nantais (RON) and PI3K hyperactivity through phospho-immunoblot analysis, organoid growth assays, and in an in vivo patient-derived xenograft (PDX) metastatic model. RESULTS: We demonstrated that RON was hyperactivated in ESR1 mutant models, and in acquired palbociclib-resistant (PalbR) models. RON and insulin-like growth factor 1 receptor (IGF-1R) interacted as shown through pharmacological and genetic inhibition and were regulated by the mutant ER as demonstrated by reduced phospho-protein expression with endocrine therapies (ET). We show that ET in combination with a RON inhibitor (RONi) decreased ex vivo organoid growth of ESR1 mutant models, and as a monotherapy in PalbR models, demonstrating its therapeutic efficacy. Significantly, ET in combination with the RONi reduced metastasis of an ESR1 Y537S mutant PDX model. CONCLUSIONS: Our results demonstrate that RON/PI3K pathway inhibition may be an effective treatment strategy in ESR1 mutant and PalbR MBC patients. Clinically our data predict that ET resistance mechanisms can also contribute to CDK4/6 inhibitor resistance.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Camundongos , Mutação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Breast Cancer Res Treat ; 157(2): 253-265, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27178332

RESUMO

The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mutação , Receptores de Somatomedina/genética , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Modelos Genéticos , Receptor IGF Tipo 1 , Receptores de Estrogênio/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Tamoxifeno/uso terapêutico
6.
Breast Cancer Res Treat ; 154(2): 225-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26487496

RESUMO

Tamoxifen (Tam) resistance represents a significant clinical problem in estrogen receptor (ER) α-positive breast cancer. We previously showed that decreased expression of Rho guanine nucleotide dissociation inhibitor (Rho GDI) α, a negative regulator of the Rho GTPase pathway, is associated with Tam resistance. We now discover that androgen receptor (AR) is overexpressed in cells with decreased Rho GDIα and seek to determine AR's contribution to resistance. We engineered ERα-positive cell lines with stable knockdown (KD) of Rho GDIα (KD cells). Resistance mechanisms were examined using microarray profiling, protein-interaction studies, growth and reporter gene assays, and Western blot analysis combined with a specific AR antagonist and other signaling inhibitors. Tam-resistant tumors and cell lines with low Rho GDIα levels exhibited upregulated AR expression. Microarray of Rho GDIα KD cells indicated that activation of EGFR and ERα was associated with Tam treatment. When AR levels were elevated, interaction between AR and EGFR was detected. Constitutive and Tam-induced phosphorylation of EGFR and ERK1/2 was blocked by the AR antagonist Enzalutamide, suggesting that AR-mediated EGFR activation was a mechanism of resistance in these cells. Constitutive ERα phosphorylation and transcriptional activity was inhibited by Enzalutamide and the EGFR inhibitor gefitinib, demonstrating that AR-mediated EGFR signaling activated ERα. Tam exhibited agonist activity in AR overexpressing cells, stimulating ERα transcriptional activity and proliferation, which was blocked by Enzalutamide and gefitinib. We describe a novel model of AR-mediated Tam resistance through activation of EGFR signaling leading to ER activation in ERα-positive cells with low expression of Rho GDIα.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores ErbB/genética , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ligação Proteica , Receptores Androgênicos/genética , Tamoxifeno/uso terapêutico , Ativação Transcricional , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
7.
Breast Cancer Res Treat ; 150(3): 535-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25820519

RESUMO

The purpose of this study was to discover novel nuclear receptor targets in triple-negative breast cancer. Expression microarray, Western blot, qRT-PCR analyses, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, and statistical analysis were performed in this study. We performed microarray analysis using 227 triple-negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRß) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRß low expressing patients were associated with poor outcome. We evaluated the role of TRß in triple-negative breast cancer cell lines representing group 5 tumors. Knockdown of TRß increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRß protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRß knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRß-specific agonists enhanced TRß expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. TRß represents a novel nuclear receptor target in triple-negative breast cancer; low TRß levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRß-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRß's effects on response to chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel , Doxorrubicina/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
8.
Mol Cancer Ther ; 5(12): 3023-31, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172405

RESUMO

It has long been appreciated that estrogenic signaling contributes to breast cancer progression. c-Src is also required for a number of processes involved in tumor progression and metastasis. We have previously identified the K303R mutant estrogen receptor alpha (ERalpha) that confers hypersensitivity to low levels of estrogen. Because ERalpha and c-Src have been shown to interact in a number of different systems, we wanted to evaluate the role of c-Src kinase in estrogen-stimulated growth and survival of ERalpha-positive breast cancer cells. MCF-7 cells stably expressing the mutant receptor showed increased c-Src kinase activity and c-Src tyrosine phosphorylation when compared with wild-type ERalpha-expressing cells. A c-Src inhibitor, AZD0530, was used to analyze the biological effects of pharmacologically inhibiting c-Src kinase activity. MCF-7 cells showed an anchorage-dependent growth IC50 of 0.47 micromol/L, which was increased 4-fold in the presence of estrogen. In contrast, cells stably expressing the mutant ERalpha had an elevated IC50 that was only increased 1.4-fold by estrogen stimulation. The c-Src inhibitor effectively inhibited the anchorage-independent growth of both of these cells, and estrogen was able to reverse these effects. When cells were treated with suboptimal concentrations of c-Src inhibitor and tamoxifen, synergistic inhibition was observed, suggesting a cooperative interaction between c-Src and ERalpha. These data clearly show an important role for ERalpha and estrogen signaling in c-Src-mediated breast cancer cell growth and survival. Here, we show that c-Src inhibition is blocked by estrogen signaling; thus, the therapeutic use of c-Src inhibitors may require inhibition of ERalpha in estrogen-dependent breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/biossíntese , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/farmacologia , Tamoxifeno/farmacologia , Benzodioxóis/administração & dosagem , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Tirosina Quinase CSK , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/metabolismo , Quinazolinas/administração & dosagem , Tamoxifeno/administração & dosagem , Quinases da Família src
9.
J Androl ; 24(2): 192-200, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12634305

RESUMO

Members of the transforming growth factor beta type (TGFbeta) superfamily and their receptors are expressed in the testis, and are believed to play important paracrine and autocrine roles during testicular development and spermatogenesis. The Smad proteins are downstream mediators for the family of TGFbeta growth factors. Smad2 and Smad3 are associated with both TGFbeta and activin signaling. However, very little is known about the expression and regulation of the Smad signaling proteins in the testis. In the present study, we have determined that Smad2 and Smad3 proteins are expressed in the postnatal testes of rats from 5 days to 60 days of age. Expression levels for both proteins are higher in young rats than in sexually mature rats. Smad2 and Smad3 messenger RNA levels parallel protein expression. Smad2 and Smad3 proteins are mainly localized in the cytoplasm of meiotic germ cells, Sertoli cells, and Leydig cells. Smad3 protein is localized to the nucleus of preleptotene to zygotene primary spermatocytes in young rats. Both proteins are expressed throughout all stages of the cycle of seminiferous tubules but are expressed at their lowest levels at stages VII-VIII in the seminiferous epithelium of adult rats. The presence of these downstream mediators in these cell types supports a role for TGFbeta and activin during spermatogenesis. The difference between the expression of Smad2 and Smad3 suggests that they may have different functions within the testis.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Testículo/crescimento & desenvolvimento , Testículo/fisiologia , Transativadores/genética , Fatores Etários , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/crescimento & desenvolvimento , Epitélio Seminífero/fisiologia , Proteína Smad2 , Proteína Smad3 , Espermatócitos/fisiologia , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA