Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Fungi (Basel) ; 10(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535182

RESUMO

Coccidioidomycosis is an important fungal disease that is found in many desert regions of the western hemisphere. The inhaled organisms are highly pathogenic, but only half of infected, immunologically intact people develop symptomatic pneumonia; most symptomatic infections resolve spontaneously, although some resolve very slowly. Furthermore, second infections are very rare and natural immunity after infection is robust. Therefore, the host response to this organism is very effective at resolving the infection in most cases and immunizing to prevent second infections. People who are immunocompromised are much more likely to develop disseminated infection. This is a comprehensive review of the innate and acquired immune responses to Coccidioides spp., the genetics of resistance to severe infection, and the search for an effective vaccine.

2.
J Fungi (Basel) ; 9(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998899

RESUMO

Gene prediction is required to obtain optimal biologically meaningful information from genomic sequences, but automated gene prediction software is imperfect. In this study, we compare the original annotation of the Coccidioides immitis RS genome (the reference strain of C. immitis) to annotations using the Funannotate and Augustus genome prediction pipelines. A total of 25% of the originally predicted genes (denoted CIMG) were not found in either the Funannotate or Augustus predictions. A comparison of Funannotate and Augustus predictions also found overlapping but not identical sets of genes. The predicted genes found only in the original annotation (referred to as CIMG-unique) were less likely to have a meaningful functional annotation and a lower number of orthologs and homologs in other fungi than all CIMG genes predicted by the original annotation. The CIMG-unique genes were also more likely to be lineage-specific and poorly expressed. In addition, the CIMG-unique genes were found in clusters and tended to be more frequently associated with transposable elements than all CIMG-predicted genes. The CIMG-unique genes were more likely to have experimentally determined transcription start sites that were further away from the originally predicted transcription start sites, and experimentally determined initial transcription was less likely to result in stable CIMG-unique transcripts. A sample of CIMG-unique genes that were relatively well expressed and differentially expressed in mycelia and spherules was inspected in a genome browser, and the structure of only about half of them was found to be supported by RNA-seq data. These data suggest that some of the CIMG-unique genes are not authentic gene predictions. Genes that were predicted only by the Funannotate pipeline were also less likely to have a meaningful functional annotation, be shorter, and express less well than all the genes predicted by Funannotate. C. immitis genes predicted by more than one annotation are more likely to have predicted functions, many orthologs and homologs, and be well expressed. Lineage-specific genes are relatively uncommon in this group. These data emphasize the importance and limitations of gene prediction software and suggest that improvements to the annotation of the C. immitis genome should be considered.

3.
Curr Clin Microbiol Rep ; 10(2): 17-28, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388463

RESUMO

Purpose of review: Fungi represent a central yet often overlooked domain of clinically relevant pathogens that have become increasingly important in human disease. With unique adaptive lifestyles that vary widely across species, human fungal pathogens show remarkable diversity in their virulence strategies. The majority of these fungal pathogens are opportunistic, primarily existing in the environment or as commensals that take advantage of immunocompromised hosts to cause disease. In addition, many fungal pathogens have evolved from non-pathogenic lifestyles. The extent of genetic diversity and heritability of virulence traits remains poorly explored in human fungal pathogens. Recent findings: Genetic variation caused by mutations, genomic rearrangements, gene gain or loss, changes in ploidy, and sexual reproduction have profound effects on genetic diversity. These mechanisms contribute to the remarkable diversity of fungal genomes and have large impacts on their prevalence in human disease, virulence, and resistance to antifungal therapies. Summary: Here, we focus on the genomic structure of the most common human fungal pathogens and the aspects of genetic variability that contribute to their dominance in human disease.

5.
Biosens Bioelectron ; 222: 114986, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36508932

RESUMO

Fungal infections are a rapidly increasing public health problem due to their high morbidity and mortality rates, especially in populations with compromised immune systems. Rapid and accurate diagnosis of these diseases is, therefore, necessary to improve the prognosis of afflicted patients. Unfortunately, current clinical chemistry practice relies on lengthy culturing methods that are insufficient to meet the fast turnaround requirements. Here we present a cost-effective and robust nucleic acid sensor that can identify the presence of histoplasmosis causing fungal genes, in whole blood or bronchoalveolar lavage (BAL) samples, far earlier than current methods. Our novel assay involves the hybridization of target gene sequences with immobilized nucleic acid probes, allowing direct, label-free detection of Hcp100, CBP1, and M antigen genes through electrochemical analysis. The resultant current is attributed to the presence of fungal targets in the sample solution. The assay provides ultra-sensitive detection of DNA molecules with a limit of detection (LOD) values down to 100 aM, sufficient to meet the clinical diagnostic need. In addition, the turnaround time for the sample to result is less than 90 min compared to the current clinical procedure's turnaround time of 3-4 weeks.


Assuntos
Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , DNA/análise , Hibridização de Ácido Nucleico/métodos , Limite de Detecção , Genes Fúngicos , Técnicas Eletroquímicas/métodos
6.
J Fungi (Basel) ; 8(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012847

RESUMO

Coccidioides immitis and posadasii are closely related fungal species that cause coccidioidomycosis. These dimorphic organisms cause disease in immunocompetent as well as immunocompromised individuals and as much as 40% of the population is infected in the endemic area. Although most infections resolve spontaneously, the infection can be prolonged and, in some instances, fatal. Coccidioides has been studied for more than 100 years and many aspects of the organism and the disease it causes have been investigated. There are over 500 manuscripts concerning Coccidioides (excluding clinical articles) referenced in PubMed over the past 50 years, so there is a large body of evidence to review. We reviewed the most accurate and informative basic research studies of these fungi including some seminal older studies as well as an extensive review of current research. This is an attempt to gather the most important basic research studies about this fungus into one publication. To focus this review, we will discuss the mycology of the organism exclusively rather than the studies of the host response or clinical studies. We hope that this review will be a useful resource to those interested in Coccidioides and coccidioidomycosis.

7.
PLoS Pathog ; 18(4): e1009832, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35385558

RESUMO

Coccidioides spp. are mammalian fungal pathogens endemic to the Southwestern US and other desert regions of Mexico, Central and South America, with the bulk of US infections occurring in California and Arizona. In the soil, Coccidioides grows in a hyphal form that differentiates into 3-5 micron asexual spores (arthroconidia). When arthroconidia are inhaled by mammals they undergo a unique developmental transition from polar hyphal growth to isotropic expansion with multiple rounds of nuclear division, prior to segmentation, forming large spherules filled with endospores. Very little is understood about the molecular basis of spherule formation. Here we characterize the role of the conserved transcription factor Ryp1 in Coccidioides development. We show that Coccidioides Δryp1 mutants have altered colony morphology under hypha-promoting conditions and are unable to form mature spherules under spherule-promoting conditions. We analyze the transcriptional profile of wild-type and Δryp1 mutant cells under hypha- and spherule-promoting conditions, thereby defining a set of hypha- or spherule-enriched transcripts ("morphology-regulated" genes) that are dependent on Ryp1 for their expression. Forty percent of morphology-regulated expression is Ryp1-dependent, indicating that Ryp1 plays a dual role in both hyphal and spherule development. Ryp1-dependent transcripts include key virulence factors such as SOWgp, which encodes the spherule outer wall glycoprotein. Concordant with its role in spherule development, we find that the Δryp1 mutant is completely avirulent in the mouse model of coccidioidomycosis, indicating that Ryp1-dependent pathways are essential for the ability of Coccidioides to cause disease. Vaccination of C57BL/6 mice with live Δryp1 spores does not provide any protection from lethal C. posadasii intranasal infection, consistent with our findings that the Δryp1 mutant fails to make mature spherules and likely does not express key antigens required for effective vaccination. Taken together, this work identifies the first transcription factor that drives mature spherulation and virulence in Coccidioides.


Assuntos
Coccidioides , Fatores de Transcrição , Animais , Coccidioides/genética , Proteínas Fúngicas , Expressão Gênica , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Esporos Fúngicos/genética , Fatores de Transcrição/genética , Virulência
8.
mBio ; 13(1): e0257421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089059

RESUMO

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Assuntos
Histoplasma , Micoses , Humanos , Sintenia , Austrália , Histoplasma/genética , Saccharomyces cerevisiae/genética , Cromossomos , Genoma Fúngico
9.
mSystems ; 7(1): e0140421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35076277

RESUMO

New or emerging infectious diseases are commonly caused by pathogens that cannot be readily manipulated or studied under common laboratory conditions. These limitations hinder standard experimental approaches and our abilities to define the fundamental molecular mechanisms underlying pathogenesis. The advance of capped small RNA sequencing (csRNA-seq) now enables genome-wide mapping of actively initiated transcripts from genes and other regulatory transcribed start regions (TSRs) such as enhancers at a precise moment from total RNA. As RNA is nonpathogenic and can be readily isolated from inactivated infectious samples, csRNA-seq can detect acute changes in gene regulation within or in response to a pathogen with remarkable sensitivity under common laboratory conditions. Studying valley fever (coccidioidomycosis), an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health, we show how csRNA-seq can unravel transcriptional programs driving pathogenesis. Performing csRNA-seq on RNA isolated from different stages of the valley fever pathogen Coccidioides immitis revealed alternative promoter usage, connected cis-regulatory domains, and a WOPR family transcription factor, which are known regulators of virulence in other fungi, as being critical for pathogenic growth. We further demonstrate that a C. immitis WOPR homologue, CIMG_02671, activates transcription in a WOPR motif-dependent manner. Collectively, these findings provide novel insights into valley fever pathogenesis and provide a proof of principle for csRNA-seq as a powerful means to determine the genes, regulatory mechanisms, and transcription factors that control the pathogenesis of highly infectious agents. IMPORTANCE Infectious pathogens like airborne viruses or fungal spores are difficult to study; they require high-containment facilities, special equipment, and expertise. As such, establishing approaches such as genome editing or other means to identify the factors and mechanisms underlying caused diseases, and, thus, promising drug targets, is costly and time-intensive. These obstacles particularly hinder the analysis of new, emerging, or rare infectious diseases. We recently developed a method termed capped small RNA sequencing (csRNA-seq) that enables capturing acute changes in active gene expression from total RNA. Prior to csRNA-seq, such an analysis was possible only by using living cells or nuclei, in which pathogens are highly infectious. The process of RNA purification, however, inactivates pathogens and thus enables the analysis of gene expression during disease progression under standard laboratory conditions. As a proof of principle, here, we use csRNA-seq to unravel the gene regulatory programs and factors likely critical for the pathogenesis of valley fever, an emerging endemic fungal infection that increasingly impacts livestock, pet, and human health.


Assuntos
Coccidioides , Coccidioidomicose , Humanos , Coccidioides/genética , Coccidioidomicose/diagnóstico , Virulência , Regulação da Expressão Gênica , RNA , Fatores de Transcrição/genética
10.
J Fungi (Basel) ; 7(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067070

RESUMO

Coccidioides immitis and C. posadasii are dimorphic fungi that transform from mycelia with internal arthroconidia in the soil to a tissue form known as a spherule in mammals. This process can be recapitulated in vitro by increasing the temperature, CO2 and changing other culture conditions. In this study, we have analyzed changes in gene expression in mycelia and young and mature spherules. Genes that were highly upregulated in young spherules include a spherule surface protein and iron and copper membrane transporters. Genes that are unique to Coccidioides spp. are also overrepresented in this group, suggesting that they may be important for spherule differentiation. Enriched GO terms in young spherule upregulated genes include oxidation-reduction, response to stress and membrane proteins. Downregulated genes are enriched for transcription factors, especially helix-loop-helix and C2H2 type zinc finger domain-containing proteins, which is consistent with the dramatic change in transcriptional profile. Almost all genes that are upregulated in young spherules remain upregulated in mature spherules, but a small number of genes are differentially expressed in those two stages of spherule development. Mature spherules express more Hsp31 and amylase and less tyrosinase than young spherules. Some expression of transposons was detected and most of the differentially expressed transposons were upregulated in spherules.

11.
PLoS Comput Biol ; 17(3): e1008857, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780444

RESUMO

To better combat the expansion of antibiotic resistance in pathogens, new compounds, particularly those with novel mechanisms-of-action [MOA], represent a major research priority in biomedical science. However, rediscovery of known antibiotics demonstrates a need for approaches that accurately identify potential novelty with higher throughput and reduced labor. Here we describe an explainable artificial intelligence classification methodology that emphasizes prediction performance and human interpretability by using a Hierarchical Ensemble of Classifiers model optimized with a novel feature selection algorithm called Clairvoyance; collectively referred to as a CoHEC model. We evaluated our methods using whole transcriptome responses from Escherichia coli challenged with 41 known antibiotics and 9 crude extracts while depositing 122 transcriptomes unique to this study. Our CoHEC model can properly predict the primary MOA of previously unobserved compounds in both purified forms and crude extracts at an accuracy above 99%, while also correctly identifying darobactin, a newly discovered antibiotic, as having a novel MOA. In addition, we deploy our methods on a recent E. coli transcriptomics dataset from a different strain and a Mycobacterium smegmatis metabolomics timeseries dataset showcasing exceptionally high performance; improving upon the performance metrics of the original publications. We not only provide insight into the biological interpretation of our model but also that the concept of MOA is a non-discrete heuristic with diverse effects for different compounds within the same MOA, suggesting substantial antibiotic diversity awaiting discovery within existing MOA.


Assuntos
Anti-Infecciosos/farmacologia , Inteligência Artificial , Farmacorresistência Bacteriana/genética , Metaboloma/genética , Fenilpropionatos/farmacologia , Transcriptoma/genética , Algoritmos , Biologia Computacional/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Metaboloma/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Transcriptoma/efeitos dos fármacos
12.
Microb Genom ; 6(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33245689

RESUMO

Mucormycoses are invasive infections by Rhizopus species and other Mucorales. Over 10 months, four solid organ transplant (SOT) recipients at our centre developed mucormycosis due to Rhizopus microsporus (n=2), R. arrhizus (n=1) or Lichtheimia corymbifera (n=1), at a median 31.5 days (range: 13-34) post-admission. We performed whole genome sequencing (WGS) on 72 Mucorales isolates (45 R. arrhizus, 19 R. delemar, six R. microsporus, two Lichtheimia species) from these patients, from five patients with community-acquired mucormycosis, and from hospital and regional environments. Isolates were compared by core protein phylogeny and global genomic features, including genome size, guanine-cytosine percentages, shared protein families and paralogue expansions. Patient isolates fell into six core phylogenetic lineages (clades). Phylogenetic and genomic similarities of R. microsporus isolates recovered 7 months apart from two SOT recipients in adjoining hospitals suggested a potential common source exposure. However, isolates from other patients and environmental sites had unique genomes. Many isolates that were indistinguishable by core phylogeny were distinct by one or more global genomic comparisons. Certain clades were recovered throughout the study period, whereas others were found at particular time points. In conclusion, mucormycosis cases could not be genetically linked to a definitive environmental source. Comprehensive genomic analyses eliminated false associations between Mucorales isolates that would have been assigned using core phylogenetic or less extensive genomic comparisons. The genomic diversity of Mucorales mandates that multiple isolates from individual patients and environmental sites undergo WGS during epidemiological investigations. However, exhaustive surveillance of fungal populations in a hospital and surrounding community is probably infeasible.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Mucorales/classificação , Mucormicose/diagnóstico , Transplantes/microbiologia , Sequenciamento Completo do Genoma/métodos , Composição de Bases , Feminino , Variação Genética , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mucorales/genética , Mucorales/isolamento & purificação , Mucormicose/microbiologia , Filogenia
13.
mSystems ; 5(4)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723799

RESUMO

Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS-a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome.IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.

14.
ACS Infect Dis ; 6(8): 2120-2129, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32673475

RESUMO

Identifying the mode of action (MOA) of antibacterial compounds is the fundamental basis for the development of new antibiotics, and the challenge increases with the emerging secondary and indirect effect from antibiotic stress. Although various omics-based system biology approaches are currently available, enhanced throughput, accuracy, and comprehensiveness are still desirable to better define antibiotic MOA. Using label-free quantitative proteomics, we present here a comprehensive reference map of proteomic signatures of Escherichia coli under challenge of 19 individual antibiotics. Applying several machine learning techniques, we derived a panel of 14 proteins that can be used to classify the antibiotics into different MOAs with nearly 100% accuracy. These proteins tend to mediate diverse bacterial cellular and metabolic processes. Transcriptomic level profiling correlates well with protein expression changes in discriminating different antibiotics. The reported expression signatures will aid future studies in identifying MOA of unknown compounds and facilitate the discovery of novel antibiotics.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Bactérias , Escherichia coli/genética , Proteoma , Proteômica
15.
Front Microbiol ; 11: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140140

RESUMO

Microbiome research has increased dramatically in recent years, driven by advances in technology and significant reductions in the cost of analysis. Such research has unlocked a wealth of data, which has yielded tremendous insight into the nature of the microbial communities, including their interactions and effects, both within a host and in an external environment as part of an ecological community. Understanding the role of microbiota, including their dynamic interactions with their hosts and other microbes, can enable the engineering of new diagnostic techniques and interventional strategies that can be used in a diverse spectrum of fields, spanning from ecology and agriculture to medicine and from forensics to exobiology. From June 19-23 in 2017, the NIH and NSF jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science Challenges in our Understanding of the Microbiome. This review is inspired by some of the topics that arose as priority areas from this unique, interactive workshop. The goal of this review is to summarize the Innovation Lab's findings by introducing the reader to emerging challenges, exciting potential, and current directions in microbiome research. The review is broken into five key topic areas: (1) interactions between microbes and the human body, (2) evolution and ecology of microbes, including the role played by the environment and microbe-microbe interactions, (3) analytical and mathematical methods currently used in microbiome research, (4) leveraging knowledge of microbial composition and interactions to develop engineering solutions, and (5) interventional approaches and engineered microbiota that may be enabled by selectively altering microbial composition. As such, this review seeks to arm the reader with a broad understanding of the priorities and challenges in microbiome research today and provide inspiration for future investigation and multi-disciplinary collaboration.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31907190

RESUMO

Antimicrobial resistance (AMR) is an ever-growing public health problem worldwide. The low rate of antibiotic discovery coupled with the rapid spread of drug-resistant bacterial pathogens is causing a global health crisis. To facilitate the drug discovery processes, we present a large-scale study of reference antibiotic challenge bacterial transcriptome profiles, which included 37 antibiotics across 6 mechanisms of actions (MOAs) and provide an economical approach to aid in antimicrobial dereplication in the discovery process. We demonstrate that classical MOAs can be sorted based upon the magnitude of gene expression profiles despite some overlap in the secondary effects of antibiotic exposures across MOAs. Additionally, using gene subsets, we were able to subdivide broad MOA classes into subMOAs. Furthermore, we provide a biomarker gene set that can be used to classify most antimicrobial challenges according to their canonical MOA. We also demonstrate the ability of this rapid MOA diagnostic tool to predict and classify the expression profiles of pure compounds and crude extracts to their expression profile-associated MOA class.


Assuntos
Antibacterianos/farmacologia , Perfilação da Expressão Gênica/métodos , Anti-Infecciosos/farmacologia , Descoberta de Drogas/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Testes de Sensibilidade Microbiana
17.
PLoS Biol ; 17(9): e3000168, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568523

RESUMO

Phenotypic switching between 2 opposing cellular states is a fundamental aspect of biology, and fungi provide facile systems to analyze the interactions between regulons that control this type of switch. A long-standing mystery in fungal pathogens of humans is how thermally dimorphic fungi switch their developmental form in response to temperature. These fungi, including the subject of this study, Histoplasma capsulatum, are temperature-responsive organisms that utilize unknown regulatory pathways to couple their cell shape and associated attributes to the temperature of their environment. H. capsulatum grows as a multicellular hypha in the soil that switches to a pathogenic yeast form in response to the temperature of a mammalian host. These states can be triggered in the laboratory simply by growing the fungus either at room temperature (RT; which promotes hyphal growth) or at 37 °C (which promotes yeast-phase growth). Prior worked revealed that 15% to 20% of transcripts are differentially expressed in response to temperature, but it is unclear which transcripts are linked to specific phenotypic changes, such as cell morphology or virulence. To elucidate temperature-responsive regulons, we previously identified 4 transcription factors (required for yeast-phase growth [Ryp]1-4) that are required for yeast-phase growth at 37 °C; in each ryp mutant, the fungus grows constitutively as hyphae regardless of temperature, and the cells fail to express genes that are normally induced in response to growth at 37 °C. Here, we perform the first genetic screen to identify genes required for hyphal growth of H. capsulatum at RT and find that disruption of the signaling mucin MSB2 results in a yeast-locked phenotype. RNA sequencing (RNAseq) experiments reveal that MSB2 is not required for the majority of gene expression changes that occur when cells are shifted to RT. However, a small subset of temperature-responsive genes is dependent on MSB2 for its expression, thereby implicating these genes in the process of filamentation. Disruption or knockdown of an Msb2-dependent mitogen-activated protein (MAP) kinase (HOG2) and an APSES transcription factor (STU1) prevents hyphal growth at RT, validating that the Msb2 regulon contains genes that control filamentation. Notably, the Msb2 regulon shows conserved hyphal-specific expression in other dimorphic fungi, suggesting that this work defines a small set of genes that are likely to be conserved regulators and effectors of filamentation in multiple fungi. In contrast, a few yeast-specific transcripts, including virulence factors that are normally expressed only at 37 °C, are inappropriately expressed at RT in the msb2 mutant, suggesting that expression of these genes is coupled to growth in the yeast form rather than to temperature. Finally, we find that the yeast-promoting transcription factor Ryp3 associates with the MSB2 promoter and inhibits MSB2 transcript expression at 37 °C, whereas Msb2 inhibits accumulation of Ryp transcripts and proteins at RT. These findings indicate that the Ryp and Msb2 circuits antagonize each other in a temperature-dependent manner, thereby allowing temperature to govern cell shape and gene expression in this ubiquitous fungal pathogen of humans.


Assuntos
Regulação Fúngica da Expressão Gênica , Histoplasma/fisiologia , Hifas/crescimento & desenvolvimento , Mucinas/metabolismo , Transdução de Sinais , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Histoplasma/citologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucinas/genética , Temperatura
18.
Virulence ; 10(1): 793-800, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560240

RESUMO

Histoplasma capsulatum is a member of a group of fungal pathogens called thermally dimorphic fungi, all of which respond to mammalian body temperature by converting from an environmental mold form into a parasitic host form that causes disease. Histoplasma is a primary fungal pathogen, meaning it is able to cause disease in healthy individuals. We are beginning to understand how host temperature is utilized as a key signal to facilitate growth in the parasitic yeast form and promote production of virulence factors. In recent years, multiple regulators of morphology and virulence have been identified in Histoplasma. Mutations in these regulators render the pathogen unable to convert to the parasitic yeast form. Additionally, several virulence factors have been characterized for their importance in in vivo survival and pathogenesis. These virulence factors and regulators can serve as molecular handles for the development of effective drugs and therapeutics to counter Histoplasma infection.


Assuntos
Temperatura Corporal , Regulação Fúngica da Expressão Gênica , Histoplasma/genética , Histoplasma/patogenicidade , Fatores de Virulência/genética , Animais , Histoplasmose/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Mutação , Virulência/genética
19.
Cell Rep ; 28(2): 295-301.e4, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291567

RESUMO

Many bacteria interact with target organisms using syringe-like structures called contractile injection systems (CISs). CISs structurally resemble headless bacteriophages and share evolutionarily related proteins such as the tail tube, sheath, and baseplate complex. In many cases, CISs mediate trans-kingdom interactions between bacteria and eukaryotes by delivering effectors to target cells. However, the specific effectors and their modes of action are often unknown. Here, we establish an ex vivo model to study an extracellular CIS (eCIS) called metamorphosis-associated contractile structures (MACs) that target eukaryotic cells. MACs kill two eukaryotic cell lines, fall armyworm Sf9 cells and J774A.1 murine macrophage cells, by translocating an effector termed Pne1. Before the identification of Pne1, no CIS effector exhibiting nuclease activity against eukaryotic cells had been described. Our results define a new mechanism of CIS-mediated bacteria-eukaryote interaction and are a step toward developing CISs as novel delivery systems for eukaryotic hosts.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos
20.
J Nat Prod ; 82(6): 1616-1626, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31155876

RESUMO

Fungi from the order Onygenales include human pathogens. Although secondary metabolites are critical for pathogenic interactions, relatively little is known about Onygenales compounds. Here, we use chemical and genetic methods on Aioliomyces pyridodomos, the first representative of a candidate new family within Onygenales. We isolated 14 new bioactive metabolites, nine of which are first disclosed here. Thirty-two specialized metabolite biosynthetic gene clusters (BGCs) were identified. BGCs were correlated to some of the new compounds by heterologous expression of biosynthetic genes. Some of the compounds were found after one year of fermentation. By comparing BGCs from A. pyridodomos with those from 68 previously sequenced Onygenales fungi, we delineate a large biosynthetic potential. Most of these biosynthetic pathways are specific to Onygenales fungi and have not been found elsewhere. Family level specificity and conservation of biosynthetic gene content are evident within Onygenales. Identification of these compounds may be important to understanding pathogenic interactions.


Assuntos
Vias Biossintéticas/genética , Fungos/química , Onygenales/metabolismo , Humanos , Estrutura Molecular , Família Multigênica , Onygenales/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA