Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Pathogens ; 12(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37764930

RESUMO

Fulminant hepatitis is a severe clinical disease characterized by a marked decline in liver function and encephalopathy. In a previous survey, using metagenomics in a group of 27 patients with this clinical condition, we observed an expressive quantity of reads of the Human pegivirus-1 (HPgV-1). Therefore, the objective of this study was to evaluate the frequency, molecular features, and HPgV-1 circulating genotypes in patients with fulminant hepatitis. After testing the collected plasma samples, we discovered twelve samples (44.4%) that were positive for HPgV-1 RNA (using both real-time and nested PCR). The positive samples presented a mean cycle threshold (Ct) of 28.5 (±7.3). Genotyping assignments revealed that all HPgV-1 positive samples belonged to the HPgV-1 genotype 2 (both subgenotypes 2A and 2B were identified). Although HPgV-1 is considered a commensal virus, little is known regarding its prevalence and genotypes in cases of fulminant hepatitis. More research is needed to understand whether HPgV-1 can be implicated in clinical disorders and infectious diseases.

2.
Viruses ; 14(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36146740

RESUMO

Viral metagenomics is increasingly being used for the identification of emerging and re-emerging viral pathogens in clinical samples with unknown etiology. The objective of this study was to shield light on the metavirome composition in clinical samples obtained from patients with clinical history compatible with an arboviral infection, but that presented inconclusive results when tested using RT-qPCR. The inconclusive amplification results might be an indication of the presence of an emerging arboviral agent that is inefficiently amplified by conventional PCR techniques. A total of eight serum samples with inconclusive amplification results for the routinely tested arboviruses-dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) obtained during DENV and CHIKV outbreaks registered in the state of Alagoas, Northeast Brazil between July and August 2021-were submitted to metagenomic next-generation sequencing assay using NextSeq 2000 and bioinformatic pipeline for viral discovery. The performed bioinformatic analysis revealed the presence of two arboviruses: DENV type 2 (DENV-2) and CHIKV with a high genome coverage. Further, the metavirome of those samples revealed the presence of multiple commensal viruses apparently without clinical significance. The phylogenetic analysis demonstrated that the DENV-2 genome belonged to the Asian/American genotype and clustered with other Brazilian strains. The identified CHIKV genome was taxonomically assigned as ECSA genotype, which is circulating in Brazil. Together, our results reinforce the utility of metagenomics as a valuable tool for viral identification in samples with inconclusive arboviral amplification. Viral metagenomics is one of the most potent methods for the identification of emerging arboviruses.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Arbovírus/genética , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Doenças Transmissíveis Emergentes , Dengue/diagnóstico , Dengue/epidemiologia , Vírus da Dengue/genética , Humanos , Metagenômica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Zika virus/genética
3.
J Periodontol ; 93(10): 1455-1467, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34986272

RESUMO

BACKGROUND: Following human immunodeficiency virus-1 (HIV-1) infection and antiretroviral therapy, the development of periodontal disease was shown to be favored. However, the influence of HIV-1 infection on the periodontal microbiota after non-surgical periodontal debridement (NSPD) needs a broad comprehension. This work aimed to compare the subgingival microbiological content of patients infected with HIV-1 and controls (non-infected) with periodontitis undergoing NSPD. METHODS: The bacterial profile of subgingival biofilm samples of patients with HIV-1 (n = 18) and controls (n = 14) with periodontitis was assessed using 16S rRNA gene sequencing. The samples were collected at baseline, 30, and 90 days after NSPD. The taxonomic analysis of gingival microbiota was performed using a ribosomal RNA database. The microbiota content was evaluated in the light of CD4 cell count and viral load. RESULTS: Both HIV and control groups showed similar stages and grades of periodontitis. At baseline, the HIV group showed higher alpha diversity for both healthy and periodontal sites. Streptococcus, Fusobacterium, Veillonella and Prevotella were the predominant bacterial genera. A low abundance of periodontopathogenic bacteria was observed, and the NSPD induced shifts in the subgingival biofilm of patients with HIV-1, leading to a microbiota similar to that of controls. CONCLUSIONS: Different subgingival microbiota profiles were identified-a less diverse microbiota was found in patients infected with HIV-1, in contrast to a more diverse microbiota in controls. NSPD caused changes in the microbiota of both groups, with a greater impact on the HIV group, leading to a decrease in alpha diversity, and produced a positive impact on the serological immune markers in patients infected with HIV-1. Control of periodontitis should be included as part of an oral primary care, providing the oral health benefits and better control of HIV-1 infection.


Assuntos
Placa Dentária , Infecções por HIV , HIV-1 , Periodontite , Humanos , HIV-1/genética , RNA Ribossômico 16S/genética , Desbridamento Periodontal , Placa Dentária/microbiologia , Periodontite/microbiologia , Bactérias
4.
Virus Res ; 311: 198689, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35090996

RESUMO

Viral metagenomics is widely applied to characterize emerging viral pathogens but it can also reveal the virome composition in health and disease. The evaluation of the virome in healthy blood donors can provide important knowledge on possible transfusion threats. Currently, there is still a paucity of information regarding the virome of blood donors who test positive for routinely tested blood-borne infections. Such analysis may reveal co-infections which in turn appear to be crucial for transfusion medicine and for patient management. The aim of this study was to evaluate the metavirome in blood donors who tested positive for routinely tested blood-borne infections, the information for which is important for transfusion medicine and blood donor management. For this purpose, we analyzed 18 blood donations obtained from HIV and HBV-infected blood donors from the Brazilian Amazon (Amapa state) and 11 HIV, HBV, HCV, syphilis and Chagas disease - positive blood donations obtained from blood donors sampled in South Brazil (Rio Grande do Sul state). We additionally included a control group of 20 blood donors obtained from Southeast Brazil (State of São Paulo). Samples were assembled in pools and sequenced by the Illumina NovaSeq 6000 platform. To link a given virus with geographic region or type of blood donor, we performed supervised machine learning classification (fingerprint analysis). The virome of both locations was predominantly composed of commensal viruses. However, in HBV-infected blood donors from the Brazilian Amazon, the Human Pegivirus-1 (HPgV-1) reads were prevailing, while in HIV-infected donors from the same location, the torque teno virus (TTV) reads expressive abundance. In blood donors from South Brazil, the most abundant reads were classified as Human endogenous retrovirus K (HERV-K). Putative emerging viruses like the Human gemykibivirus-2 (HuGkV-2) were exclusively identified in samples from the Brazilian Amazon. The fingerprint analysis demonstrated that the HERV-K, TTV-7, 13, and 15 were statistically important for the infected blood donors, while TTV-5, 12 and 20 were linked to geographic localization. Our study revealed differences in the viral composition among blood donors who tested positive for routinely tested blood-borne infections from two different Brazilian regions and indicated the presence of putative emerging viruses in samples obtained from the Amazon. Together our results show that the presence of specific commensal viruses may be related donor infection status but additional investigations including larger study groups and samples from other Brazilian regions are needed to confirm this hypothesis.


Assuntos
Infecções por HIV , Vírus , Doadores de Sangue , Infecções Transmitidas por Sangue , Brasil , Humanos , Metagenômica , Vírus/genética
5.
Virus Res ; 308: 198643, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848213

RESUMO

The SARS-CoV-2 alpha VOC (also known as lineage B.1.1.7) initially described in the autumn, 2020 in UK, rapidly became the dominant lineage across much of Europe. Despite multiple studies reporting molecular evidence suggestive of its circulation in Brazil, much is still unknown about its genomic diversity in the state of São Paulo, the main Brazilian economic and transportation hub. To get more insight regarding its transmission dynamics into the State we performed phylogenetic analysis on all alpha VOC strains obtained between February and August 2021 from the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants. The performed phylogenetic analysis showed that most of the alpha VOC genomes were interspersed with viral strains sampled from different Brazilian states and other countries suggesting that multiple independent Alpha VOC introductions from Brazil and overseas have occurred in the São Paulo State over time. Nevertheless, large monophyletic clusters were also observed especially from the Central-West part of the São Paulo State (the city of Bauru) and the metropolitan region of the São Paulo city. Our results highlight the Alpha VOC molecular epidemiology in the São Paulo state and reinforce the need for continued genomic surveillance strategies for the real-time monitoring of potential emerging SARS-CoV-2 variants during the ever-growing vaccination process.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2/genética , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Genômica , Humanos , Organização Mundial da Saúde
7.
J Med Virol ; 93(12): 6782-6787, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34241897

RESUMO

Sao Paulo State, currently experiences a second COVID-19 wave overwhelming the healthcare system. Due to the paucity of SARS-CoV-2 complete genome sequencing, we established a Network for Pandemic Alert of Emerging SARS-CoV-2 Variants to rapidly understand and monitor the spread of SARS-CoV-2 variants into the state. Through analysis of 210 SARS-CoV-2 complete genomes obtained from the largest regional health departments we identified cocirculation of multiple SARS-CoV-2 lineages such as B.1.1 (0.5%), B.1.1.28 (23.2%), B.1.1.7 (alpha variant, 6.2%), B.1.566 (1.4%), B.1.544 (0.5%), C.37 (0.5%) P.1 (gamma variant, 66.2%), and P.2 (zeta variant, 1.0%). Our analysis allowed also the detection, for the first time in Brazil, the South African B.1.351 (beta) variant of concern, B.1.351 (501Y.V2) (0.5%), characterized by the following mutations: ORF1ab: T265I, R724K, S1612L, K1655N, K3353R, SGF 3675_F3677del, P4715L, E5585D; spike: D80A, D215G, L242_L244del, A262D, K417N, E484K, N501Y, D614G, A701V, C1247F; ORF3a: Q57H, S171L, E: P71L; ORF7b: Y10F, N: T205I; ORF14: L52F. The most recent common ancestor of the identified strain was inferred to be mid-October to late December 2020. Our analysis demonstrated the P.1 lineage predominance and allowed the early detection of the South African strain for the first time in Brazil. We highlight the importance of SARS-CoV-2 active monitoring to ensure the rapid detection of potential variants for pandemic control and vaccination strategies. Highlights Identification of B.1.351 (beta) variant of concern in the Sao Paulo State. Dissemination of SARS-CoV-2 variants of concern and interest in the Sao Paulo State. Mutational Profile of the circulating variants of concern and interest.


Assuntos
SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Brasil , COVID-19/imunologia , COVID-19/virologia , Genômica/métodos , Humanos , Mutação/genética , Mutação/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Genet Mol Biol ; 44(1 Suppl 1): e20200452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35421211

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.

11.
Braz. j. infect. dis ; 24(3): 250-255, May-June 2020. graf
Artigo em Inglês | LILACS-Express | LILACS, Coleciona SUS | ID: biblio-1132440

RESUMO

ABSTRACT Toxoplasmosis is a zoonotic infection caused by the protozoan parasite Toxoplasma gondii. The infection is widely disseminated in the human population and is usually benign or asymptomatic. Systemic T. gondii infection presents risks for pregnant women and AIDS patients. Although rare, T. gondii can cause outbreaks in urban centers. The origin of these outbreaks is not completely understood but probably results from introduction of zoonotic T. gondii strains in the population. During such outbreaks other pathogens which mimic T. gondii acute febrile syndrome may also circulate; therefore, detailed investigation of the outbreak is of extreme importance. In this study we performed viral metagenomics next-generation sequencing (mNGS) in patient samples obtained during T. gondii outbreak in Santa Maria city, South Brazil. Specific bioinformatics pipelines specialized in virus discovery were applied in order to identify co-circulating vial agents. Epstein Barr virus and Parvovirus B19 contigs were assembled and these viruses can cause symptoms similar to toxoplasmosis. In conclusion, our findings show the importance of Metagenomics next generation sequencing (mNGS) use to help characterize the outbreak more completely and in the management of the affected patients.

12.
Braz J Infect Dis ; 24(3): 250-255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32422120

RESUMO

Toxoplasmosis is a zoonotic infection caused by the protozoan parasite Toxoplasma gondii. The infection is widely disseminated in the human population and is usually benign or asymptomatic. Systemic T. gondii infection presents risks for pregnant women and AIDS patients. Although rare, T. gondii can cause outbreaks in urban centers. The origin of these outbreaks is not completely understood but probably results from introduction of zoonotic T. gondii strains in the population. During such outbreaks other pathogens which mimic T. gondii acute febrile syndrome may also circulate; therefore, detailed investigation of the outbreak is of extreme importance. In this study we performed viral metagenomics next-generation sequencing (mNGS) in patient samples obtained during T. gondii outbreak in Santa Maria city, South Brazil. Specific bioinformatics pipelines specialized in virus discovery were applied in order to identify co-circulating vial agents. Epstein Barr virus and Parvovirus B19 contigs were assembled and these viruses can cause symptoms similar to toxoplasmosis. In conclusion, our findings show the importance of Metagenomics next generation sequencing (mNGS) use to help characterize the outbreak more completely and in the management of the affected patients.


Assuntos
Metagenômica , Toxoplasma , Toxoplasmose/virologia , Anticorpos Antiprotozoários , Brasil/epidemiologia , Surtos de Doenças , Humanos , Toxoplasmose/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA